
A-ft6l 456 ROA (TRADEMRK) REUSRUILXTY BIIDELIMESMU SOFTECH INC 1/1
MALTHAM MR C AUSNIT ET AL. APR85 25-2-209/2
ESD-TR-85-142 F33600-84-D-1289

UNCLASSIRIED F/0 9/2 ML

ME in~.hhhh
Im fllllff l.ffff

111.21 [Q 4 Lh2
L

11111 8
f11 1.25 11.4 1116

miii-iiii-.uni

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - is - A

'. -:..",..,.:. , . %. :,.'...:. ...-.-.... .-...>,'....N ' .-.. .- _ .. *-,-. .. -. ,- . r. .,,

ESD-TR-85-1 42 3285-2-208/2

a'

Ada Reusability Guidelines

CHRISTINE AUSNIT
CHRISTINE BRAUN

STERLING EANES
JOHN GOODENOUGH

(n RICHARD SIMPSON

0 Soffrech, Inc
U 460 Totten Pond Road
li Waltham, MA 02254

April 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4.

DTIC

sILL cOil 22
Prepared for N A

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR ACQUISITION LOGISTICS
AND TECHNICAL OPERATIONS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

' '1 18 9 4

~~.-v.. oo , o o- • . o..... .. o. °.°°0 .o • • o.
......... .. , ,..... . ,....................... ,. ,. ,''..a -. ,, .. ,

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sep-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has heen reviewed and is approved for publication.

ANTHONY L. STEADMAN WILLIAM J.
Project Officer, Project 2526 Program Man -er,
Software Engineering Tools and Methods Computer Re ource

Management Technology

FOR THE OMMANDER

Director, Computer Systems Engineering
Deputy for Acquisition Logistics
and Technical Operations

-.... .. . % rW.°
r Vftt~t~V -~

-.-w" f * t ~ f

*: Unclassified
SECURITY CLASSIFICATION OF THIS PAGE -A4A/ X

REPORT DOCUMENTATION PAGE

I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONIAVAILABILITY OF REPORT

0_ Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(SI S. MONITORING ORGANIZATION REPORT NUMBER(S)

3285-2-208/2 ESD-TR-85-142

Ba NAME OF PERFORMING ORGANIZATION 1b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

SofTech, Inc Hq Electronic Systems Division (AL)

Sc. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

460 Totten Pond Road Hanscom Air Force Base, MA 01731
Waltham, MA 02254

ft. NAME OF FUNDING/SPONSORING 9b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (it appucale)

F33600-84-D-0280

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE ,Include Sec.rity C -ifation, 572

Ada* Reusability Guidelines
12. PERSONAL AUTHOR(S)
Christine Ausnit, Christine Braun, SterlinA Eanes, John Goodenou h, Richard Simson

13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day' 15. PAGE COUNT

Final FROM TO 1985 April 86
16. SUPPLEMENTARY NOTATION

* Ada is a registered trademark of the U.S. Government, Ada Joint Program Office (AJPO)

17. COSATI CODES 1& SUBJECT TERMS (Continue on reuerm if necuemry and identify by block numberp

FIELD GROUP SUB. GR. Ada
Software reusability

19. ABSTRACT (Continue on rever e if necemary and identify by block numberp

Reusable software is software that can, with little or no modification, be used in a variety
of application systems other than that for which it was originally developed. The Ada
language provides many features that support reusability, but reusability can be greatly
enhanced if the features are used in certain controlled ways. This report addresses the
design, development, documentation, and management issues relating to reusability.

20. OISTRISUTION/AVAILASILITY OF ABSTRACT 21. ASSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. dOTIC USERS C Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c OFFICE SYMBOL
(Include Am Code I

DO FORM 1473. 83 APR EDITION OF I JAN 73 IS OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

" '-_: : '.-;:.': L'." ." '..-'. L -" .."....".,..-..-..'.."., "--"

Wi-7.

I

EXECUTIVE SUMMARY

-' This report presents guidelines for the use of Ada to produce

reusable software, that can, with little or no modification, be used
in a variety of application systems other than that for which it is
originally developed. Reusability offers the potential for great
cost savings in DoD systems development. The Ada language provides
many features that support software reusability, but reusability can
be greatly enhanced if the features are used in certain controlled
ways. For example, reusable components must be exceptionally well-
tested, and each reusable component must have its own documentation
at the level currently required for a CPCI. Reusability also has
implications for managers -- the additional cost of developing
reusable software must be understood and developers must not be
penalized. This report addresses the design, development,
documentation, and management issues relating to reusability.

The major motivation for development of this report was support
for the acquisition of a highly-reusable Ada implementation of the
JINTACCS Automated Message Preparation Systems (JAMPS).- JAMPS
supports the uss of the JINTACCS standard, which will be-equired in
many Tactical C systems. Consequently, a reusable implement4tion
has great cost-saving potential. This report can be provided to the
JAJPS implementation contractor to be used as a guide during design
and development. It also includes guidelines appropriate for
government use in managing and monitoring the development effort.

The information in this report, while motivated by the JAMPS
requirement, is equally applicable to any development with a
requirement for reusable software.

......-..ti.n

iii
,or

" " .. •."." ." " " " -, " ." , . . : " ' " ".°'".".; '" ".'' " '3

ACKNOWLEDGMENT

This document was prepared by SofTech, Inc., under Air Force
contract 733600-84-D-0280 (administered by Me.* Pat Knoop, Language
Control Facility, Wright-Patterson Air Force Base). Financial
support vas received from Program Element 64740F, Embedded Computer
Systems Engineering and Applications, Electronic System Division,
United States Air Force Systems Command, Hanscom Air Force Base
(ESD/ALSE). The MITRE Corporation provided technical guidance.

iv

-: . -7,

TABLE OF CONTENTS

Section Page

I INTRODUCTION 1

2 REUSABILITY CONCEPTS 3

2.1 WHAT IS REUSABILITY 3

2.1.1 Definitions 3
2.1.2 Reusability and Portability 5
2.1.3 Examples 9

2.2 THE IMPORTANCE OF REUSABILITY 11

2.3 REUSABILITY ISSUES 12

3 LITERATURE SURVEY 15

4 DESIGN GUIDELINES 19

4.1 MODELS 19

4.2 LAYERED ARCHITECTURE 22

4.3 INTERFACES 27

4.4 EFFICIENCY 31

4.4.1 Areas of Impact 31
4.4.2 Improving Efficiency 33

4.5 LIBRARIES 37

5 ADA INTERFACE GUIDELINES 42

5.1 PACKAGES AND SUBPROGRAMS 42

5.2 GENERICS 42

5.3 ERROR HANDLING AND EXCEPTIONAL CONDITIONS 49

5.4 PARAMETERS AND TYPES 51

v

TABLE OF CONTENTS (Continued)

Section Page

6 DOCUMENTATION GUIDELINES 54

6.1 FUNCTIONAL DESCRIPTION 56

6.1.1 Section 1I- Functional Summary 56
6.1.2 Section 2 -- Documentation References 58
6.1.3 Performance Characteristics 58
6.1.4 Known Limitations 59
6.1.5 User Nodification/Customization Provisions 59
6.1.6 Partial Reuse Potential 60
6.1.7 Special Design Considerations 60
6.1.8 Error Handling 61
6.1.9 What to do if a Problem Occurs 61
6.1.10 Examples of Reuse 61

6.2 INTERFACE DESCRIPTION 61

6.2.1 Reusable Component Called Via Subprogram
Call by Reuser 62

6.2.2 Reusable Component Calls Subprogram
of Reuser 62

6.2.3 Reusable Component is a Task with an
Entry Called by Rouser 62

6.2.4 Reusable Component is a Task that Calls
an Entry of Reuser 62

6.2.5 Reusable Component Shares Memory with
Subprogram of Reuser 63

6.2.6 Reusable Component is a Task Sharing
Memory with Task of Reuser 63

6.2.7 Reusable Component Communicates with
Reuser via a Shared File with One
Writing and the Other Reading 63

6.2.8 Reusable Component Communicates with Reuser
via a Shared File with Simultaneous
Access by Both 63

6.2.9 Reusable Component Communicates with Reuser
via a Message Passing or "Mailbox"
Mechanism 64

6.2.10 Reusable Component Sends Data to and/or
Receives Data from Reuser via a
Communication Channel 64

vi

77. - 777 77c.% -. - - *. *

TABLE OF CONTENTS (Concluded)

Section age

6.2.11 Reusable Component and Reuser Have an
Additional "Understanding" About
One Another 64

7 MANAGKENT GUIDELINES 65

7. INCENTIVES FOR REUSABILITY 65

7.2 DERONSTRATING REUSABILITY 67

7.3 TOOL SELECTION CRITERIA 68

7.3.1 Compiler Tools 67
7.3.2 Other Tools 70

APPENDIX A -- BIBLIOGRAPHY 73

DISTRIBUTION LIST 75

vii

SECTION 1

INTRODUCTION

This document provides guidelines for writing reusable softvare
in Ada. It is intended as a practical working guide for software
designers and developers, and also as an aid to project managers.

Reusable software is software that can be used in a variety of
different overall software application systems. For example,
standard mathematics and statistics packages are reusable components
in wide use today. Software reusability offers great potential for
cost savings. A common function need be programmed, debugged, and
documented only once, rather than for every system in which it is
used. In addition to the obvious savings of development costs,
software reliability increases when already-proven components can be
used.

Software reusability is currently a major concern within the
Department of Defense. Military systems perform many similar
functions, and it is reasonable to attempt to provide common
reusable software packages that perform these functions. These are
generally much more substantial functions than the simple math
library kinds of functions that have traditionally been reused, and
the potential benefit of reuse is very great. However, achieving
reusability of more complex components such as these is a
significantly more complex problem.

The Ada language for the first time makes this problem
approachable for the DoD community. Ada offers a number of
facilities that support the development of reusable software;
indeed, this was one of the major goals in the design of the
language. Features such as packages and generics provide the flexi-
bility and customuizability required for reusable software, and the
mechanisms for expressing such design characteristics effectively.

This guide addresses the writing of reusable software in Ada.
t begins by discussing the concept of software reusability and the

various aspects of reusability that must be considered (Section 2).
References to the literature that way interest the designer of
reusable software are then presented (Section 3). The rest of the
document consists of the specific guidelines. Guidelines for
design, Ada interfaces, documentation, and management are given in
Sections 4-7. Throughout the document, specific recommendations are
highlighted by enclosing them in boxes. This sets the recommenda-

tions apa-t from general discussion of then and helps the reader
focus on ti e key issues.

It should be noted that the recommendations in this document
are guidelines, not absolute rules. There are many ways of viewing
reusability and even more ways of achieving it. The material pre-
sented here does not take the place of the study required to develop
a full understanding of a particular design problem, but rather
guides the designer in understanding his particular reusability
requirements and presents practical advice for meeting these

requirements.

2

SECTION 2

REUSABIL1TY CONCEPTS

Reusability is a term widely used in software engineering
literature but its precise meaning is rarely addressed. Yet in
order to achieve reusability, it is important to have an under-
standing of the concepts of reusability. With an understanding of
these concepts, the motivation behind the guidelines in this guide
becomes much more apparent. This section will address these
concepts, in particular:

o What is reusability? How is it related to portability?

o What are the problems that reusable software tries to solve,
and why are these problems not addressed more often?

o What are some of the issues relating to the development of
reusable software?

2.1 WHAT IS REUSABILITY?

Whenever an attempt is made to define a tenm that has been
appropriated from general English use for use in an engineering
discipline, semantic difficulties can be encountered. In order to
solve these difficulties, the following sections approach the
definition of reusability from several different viewpoints. The
first approach is to present different definitions and analyze them
in order to yield an acceptable definition and an understanding of
that definition. The second approach is to compare reusability with
a term often used interchangeably with it, portability. The final
section presents some examples of typical reusable software com-
ponents, thus allowing a definition by example.

2.1.1 Definitions

When developing guidelines for reusability, it is important
that all users of the guide have a common understanding of how the
term reusability is used by the guideline. The tens is defined,
implicitly or explicitly, differently in different documents. Each
one of these views of the definition is potentially valid for the
context in which it is used. However, this guideline will ex-
plicitly provide a definition for use.

If one looks in a dictionary for the English language, one is
able to derive the following definition.

Reusability

The capability of being used again or used repeatedly.

This definition addresses the core issue of reusability -- the
ability to be used again or repeatedly. For the purposes of this
guide however, it is not specific enough. There is no indication as

to what is being reused or what does it mean to be used or reused.

Rogers(*) in an article on standard architecture for business
application programs defines Reuse in the following way:

"A reusable function is a programming function that is
developed once and used in many different programs."

This is closer to what is needed, indicating that what is being
considered is a programming function that is used in more than one
program. It does not, however, address the functions that are adapted
to the new applicatiois, or whether adaptation is even considered
necessary.

In attempting to address the issues raised by the earlier
definitions, a definition has been developed for use in this guide.

Reusabil1i ty

The capability of a software component to be used again or
used repeatedly in applications other than the one for which
it was originally developed. In order to be effectively
reused, the component may have to be adapted to the
requirements of the new application.

There are several things to note about this definition.

o The definition is concerned with reuse at the software com-
ponent level, not at the application level. In general, the
things which are to be considered for reuse are individual
subprograms or subsystems to perform a well-defined piece of'
the akplication. The application as a whole will use that
component to help accomplish its overall task.

*Rogers, F,. R., "A Simple Architecture for Consistent Application
Program Design," IBM Systems Journal, Volume 22, No. 3, 1983.

0 The definition does not distinguish between the reuse of
top-level components and the reuse of bottom-level com-
ponents. One form of reuse is for the calling component to
be reused, changing or replacing those subprograms which are
called. An example of such a situation is where there is a
component for doing formatting of the input stream. It must
call subprograms to perform the actual I/O. If properly
designed, it should work even if it is reused in an applica-
tion that uses different subprograms to perform the actual
I/O. Another form of reuse is for the called component to
be reused. The most common example of such a situation is a
scientific subroutine library. The components in the
library do not change even though they may be called from
many different applications.

o The definition makes clear that the component may need to be
adapted to the new requirements in order to be effectively
reused. When discussing reusability, it is important to
note that adaptation is often a necessary part in utilizing
reusable software. In general, the adaptation comes on the
part of the application which is using the reusable com-
ponent. The application must adapt itself to be compatible
vith the requirements imposed by the interface to the re-
usable component. However, it is sometimes necessary to
adapt the reusable component itself to accurately reflect
more the requirements of the application. In a totally
abstract view, all software can be considered to be
adaptable for reuse in all applications; if nothing else,
the reserved words in the component can be reused. This is,
however, not a practical definition. There is a point at
which the cost to develop the software from scratch out-
weighs the savings from adapting for reuse. Figure 2-1
illustrates the tradeoff.

This definition is sufficiently broad to cover a wide range of
situations, yet not so general as to be ambiguous in its meaning.
It is this definition of reusability that will be used by this
guide.

2.1.2 Reusability and Portability

Reusability and portability are terms which are often used
interchangeably. Yet they are distinct terms with differing mean-
ings. How different they are dppends on precisely how each term is
defined. Part of the confusion comes from the f act that particular
definitions of each of those terms do overlap in meaning. Although
those definitions are appropriate for some situations, for this

Reuse Worthwhile IReuse Not Worthwhile

0%

Amuto Aatto

Figue 21. ost o Aaptvs. ostto eus

6

guide, it is important to make them as distinct as possible. To do
that, portability is defined here so that it can be contrasted vith
reusability.

Portability

The capability of an application to be used again in a
different target environment than the one for which it was
originally developed. In order to be ported effectively,
the components of the application may need to be adapted
to the requirements of the new target environment.

There are several things to notice in the definition of
portability that make it distinct from reusability.

o Portability is normally concerned with transporting an
sntire application, whereas reusability is concerned with
the reuse of a component of that application.

o When an application is transported, it is used in a nev
target environment; when a component is reused, it is used
in a new application.

" Portability is concerned with changing the target environ-
ment, and any portions of the application which depend on
that environment, so that the application reflects the
requirements of the new environment.

o Reusability is concerned with dealing with a different
application which uses a component and any aspects of that
component that need to change to reflect the requirements of
the new application.

Figure 2-2 illustrates these differences.

Another distinction is that, to a large extent, reusability is
a design consideration while portability is an implementation
consideration. Reusability is achieved primarily by control of the
structure of the overall system and of the nature of the interfaces
between components. Portability is concerned more with specific use
of language features so as to avoid undesired hardware (or other
target environment) dependencies. A useful (although somewhat
simplified) way to look at this is that reusability deals with
software and interface dependencies, while portability deals with
hardware and software system dependencies.

7S

TRANSPORTING AN APPLICATION

REUSING A COMPONENT

SADAPTED PART

SCHANGED PART

Figure 2-2. Portability vs. Reusability

8

Portability of an application does not imply that the
components of that application are reusable in another application.
It is very likely that all components of the application could be
tightly coupled, thus preventing any one of them from being used
separately in another application. In general, all components of
the application will be used in all target environments.

Similarly, reusability does not imply portability. A reusable
component could be very target dependent, e.g., an I/0 package that
is reusable across all projects on one target environment, but
unusable in any other target environment.

It is important to note, however, that portability and
reusability are not mutually exclusive properties. If it is desired
to be able to reuse a component in application systems that run on
different target environments, then the component must be designed
for portability as well as reusability. Thus, a goal of maximizing
reusability will usually include portability as a requirement.

This report deals exclusively with issues of reusability. A
companion report on portability,* prepared as part of the same
overall effort, discusses portability issues.

2.1.3 Examples

Perhaps the best way to understand the meaning of a term is to
see some examples of its use. This section looks at several dif-
ferent categories of software, which could be designed for reusa-
bility. For each category, Its characteristics will be examined to
see how it fits within this guide's definition of reusability, and
some examples are given.

Support Routines - This category includes routines that are
used to support the processing of a function; they are involved in
the intrinsic processing of the algorithm.

o Math and statistics libraries - These classic scientific
subroutine libraries provide basic mathematical and
statistical functions in a readily usable form.

o Standard graphics packages - These are packages used by
multiple applications to govide a standard interface to a
graphics terminal. They provide the basic capabilities of
line and shape creation, as well as windowing and other more

:OF. Pappas, Ada Portability Guidelines, ESD-TR-85-141, March 1985.

9

7_ -7 --. -Z"-

advanced capabilities. Implementations of the Graphical
Kernel System (GKS) standard are good examples of this sort
of package.

Language primitives - These components provide support for anp abstraction which is designed to be usable in a wide range of
applications.

o Data structure support (stacks, lists, queues) - This is the
classic example of a reusable component. The component pro-
vides abstract support for a complex data structure so users
need not be concerned with the details of the implementa-
tion.

o Complex numbers package - This is similar to the data struc-
ture support except that it supplies capabilities to make a
more complicated data type such as complex numbers appear to
the user like a built-in data type, in addition to hiding
the details of the implementation.

Program Generators - These tools encourage reusability by
allowing the user to specify the requirements for the component of
the application, and then having the tool generate the code to
actually implement the requirements. A good example of such a tool
is a parser generator such as YACC (Yet Another Compiler Compiler
available in UNIX). The user specifies the requirements in the form
of the BNF grammar. YACC takes the grammar and produces both a
table-driven parser and the tables for that parser. Ada generics
can be viewed as a somewhat more limited form of program generator
where the user specifies the requirements in terms of parameters to
the generic template and the compiler creates an instantiation which
fulfills those requirements.

Subsystems - These components implement a fairly major portion
of the application, and often concerned with the overall algorithm
and control of the application.

o Menu processing subsystem - This sort of system is becoming
very common on microcomputer development environments. The
vendor provides a standard menu processing subsystem which
all applications can use, thus providing a standard user
interface to the system.

o JAMPS message formatting and preparation system - The JAMPS
software will be designed to be incorporated within a
variety of different application. to provide well-defined
interfaces for the preparation and validation of messages,
transmission of messages, and reception of messages.

10

V. 0_ r. T. - ..4- -. 7. .

2.2 THE IMPORTANCE 0F REUSABILITY

The major reason for designing reusable software comes from the
expectation that this will increase the productivity of a project
that reuses the software component. An article in Strategy for a
DoD Software Initiative(*) states that:

"One way to increase productivity and lower costs is to
reuse parts from previous projects in new projects. It
should be possible to make parts produced by one DoD
contractor available to other contractors, greatly
increasing the inventory of reusable parts and the
productivity of those who use them."

Other recent studies by NASA have suggested that a factor of four
savings in maintenance costs is possible with reusable software.

How is it expected that reusable software components will be
able to improve productivity and lover cost? The expectation is
that if, for example, in the development of a particular system,
that system is composed of 50% reused code, the productivity will
have doubled. Effectively, the lines of code produced will have
been twice that which would have been possible without the reuse.
With increased productivity comes decreased cost. In adlition, the
reused components should be more reliable than the new code since
they will have already been thoroughly tested. However, reuse does
not always mean reused components are free. Using code from another
application does not come for free. There may be adaptation costs
to match the application's requirement. to those of the reusable
component. The degree of match or mismatch must be examined to
determine the efficacy of the reuse. However, in general, in-
corporating reusable components in an application will increase
productivity, improve reliability, and lower cost.

Several issues arise when considering reusing components. The
first is how to develop the reusable components in the first place.
In general, software is not designed with reuse in mind, because it
takes more design and test time to develop reusable components.
This potential problem can most effectively be addressed from a

*Anonyfous, 'Application-oriented Technologies and Reuse," Strategy
for a DoD Software Initiative, Vol II: Appendices, 1 October 1982,
pp. 186-200.

1%1

management aide to ensure that there are incentives and milestones
Z to encourage the development of reusable components. Section 7 of

this report addresses this issue. The second issue is the impact
reusability has on efficiency. A component, having been designed
for reusability, will often be more general than is needed for a
specific application. Section 4.4 of the report looks at how that
impact can be minimized.

Overall, the benefits of reusability are great enough to
outweigh these potential problems. In any significant project, it
is worthwhile considering reusability, both from the standpoint of
investigating the possibility of reuse of existing work and from the
standpoint of allowing for the reuse of the software to be developed
on the project.

2.3 REUSABILITY ISSUES

In order to determine the degree to which effective software
reusability can be achieved in Ada, a number of issues must be
explored. Several of these issues are summarized below and
discussed in detail in the body of this report.

Generality and parameterization. What degree of generality can
be built into system components written in Ada? How can components
be parameterized to maximize the generality?

Because it will rarely be the case that a major software com-
ponent can be reused exactly as it is with no changes, it is
important for reusability to focus on how generality can be easily
achieved. Ada provides generic packages, tasks and subprograms to
assist in writing software components that can be explicitly
parameterized to allow variability of application. There are also
certain design approaches that can be brought to bear to produce
software that can be more easily varied. These include the ideas of
information hiding and layered design. These design approaches are
supported by the Ada package feature. In summary, the use of Ada
should make a significant improvement in our ability to produce
relatively large reusable software components by its support for
component generality and parameterization.

Performance. To what extent can generality be achieved without
undue sacrifice of performance?

On the other side of the coin, from variability or generality,
is the issue of system performance. In general, it is true that the
more detailed knowledge available about the use of a software com-
ponent, the better it can be made to perform, since advantage can be

12

taken of the specific circumstances of the use. Most experienced
programers can tell horror stories about the poor performance of
excessively general systems.

F: In many cases, though not all, reusability would be worth some
h . sacrifice in performance. The difficult part is determining what is

a reasonable tradeoff in a specific case. Ada provides some
r features that help reduce the cost of added generality. The INLINE

pragma, being the most notable, allows small subprograms to have
their object code placed directly in the program at the point of
their call. This avoids the subprogram call overhead and also
allows optimization to occur across the subprogram boundary. A
common technique for increasing the generality of a software system
is to use small subprograms to "soak up" the differences in dif-
ferent applications. The use of the INLINE pragma allows this
technique to be used without requiring a significant degradation in
system performance.

Documentation. How can Ada components be documented so a
potential user can evaluate them as candidates for reuse?

Clearly, if a software component is to be reused, the potential
reusers must know, in detail, what it will do for them. Only if
this information is available, can the component be evaluated as a
candidate for reuse. Lack of reliable information is a principal
contributor to the "not invented here" syndrome that is the often
stated reason for not reusing software.

To promote reuse of software, it is necessary to develop a
technique for providing information that will be perceived as
reliable about the details of the functions provided by a software
package. Ada provides some help in this by providing the specifica-
tion part that specifies the interface to a software component.
This does not do the whole job, however, because it does not say
enough about the semantics of the component -- what function does it
actually do. Some additional conventions, possibly in the form of
structured header comments, are required to provide this additional
information.

Encouraging Reusable Software. How can customers or management
encourage the development of reusable software? How can the incen-
tives be given for development of reusable software?

Like most things in the world, reusable software will not
happen by itself. The natural tendency of those responsible for
developing a specific software system is setting aside any issues
not bearing directly on getting the job at hand done on its schedule
and budget. If reusable software is to result from a development

13

effort, it must be stated as an explicit requirement of the job.
Only in this way, can a project manager justify spending the time,
money, and intellectual effort necessary to make the software
reusable.

Managing Reusable Software. How is a requirement for
reusability established? How is conformance to requirements
verified? Who controls the software once it is developed?

Reusability can only be expected if it is an explicit
requirement for a project, established by the customer Q- by the
project manager. However, it is not sufficient to simply state "the
software shall be reusable." This immediately raises questions as
to scope of reusability (i.e., In what systems? On what different
hardware? With what degree uf modification?) as well as to how
compliance with the requirement is to be verified. The reusability
requirement must be more explicitly bounded, and the means for
verifying compliance must be established.

Once it has been decided that reusability is a goal, management
effort must be expended to ensure the goal is met. Techniques
available to help do this include such things as adding reusability
questions to the Quality Assurance checklists. It will also be
necessary to pay attention to testing the software for the required
level of generality.

Since the goal of reusability is to facilitate reuse in
multiple applications systems, consideration must be given to the
control and distribution of the component once it is developed. A
single point of maintenance, configuration control, and distribution
must be established. Procedures for other users to obtain the
component are necessary. In the case of a government acquisition,
GFE issues must be examined. As we move toward a "software
components industry," the view of government acquisition and
distribution of software components must evolve to support this new
technology.

14

SECTION 3

LITERATURE SURVEY

Existing literature on reusability is limited. Numerous
articles recognize its importance; however, only a small selection
discuss it as the primary topic. Our research indicates general
agreement on the meaning and goals of reusability. This section
will briefly discuss the results of our survey, referencing only
those papers making some more interesting points on the topic. A
complete bibliography is found at the end of the report.

Reusability is defined as the ability to reuse a module,
subsystem or complete system in an application different than the
one for which it was originally written. This reuse may or may not
involve some modification to the component in order to install it inh the new application. The concept of portability is often treated as
one of the aspects of reusability. In addition, the following
characteristics are commonly found in reusable components:

o communicativeness
o accessibility
o self-descriptiveness
o conciseness
o generality
o modifiability
o simplicity
o machine and application independence
o functional scope

These traits apply to the combination of the code and the
documentation that accompanies it. A component should contain a
single function, i.e., demonstrate high cohesion and low coupling.
The code proper should be well-structured, modular, and appropri-
ately commented. The function coded should be parameterized, where
possible, to promote maximum generality, though not at the price of
undue complexity. Furthermore, a reusable function should avoid
dependence on system hardware or system software, and it should, of
course, be meaningful.

The most concentrated collection of related papers is in the
special issue of the IEEE Transactions on Software Engineering
(September 1984) devoted to software reusability. This special
issue contains papers from the "Workshop on Reusability in
Programming" which was held in Newport, RI in September 1983.
Papers by Horowitz and Munson, Jones, and Standish survey the

15

state-of-the-art with respect to reusable programming. The most
relevant papers from the point of view of this report, those by
Coguen, Litvintchouk and Matsumoto, and Neighbors, are surveyed
below.

In his paper, Goguen describes a number of issues involved in
parameterizing programs. Parameterization increases the opportunity
to reuse a software module by increasing its flexibility to adapt to
the requirements of different applications. He discusses three
concepts that go beyond the parameterization provided directly in
Ada -- theories, which define the properties required of an actual
parameter for it to be meaningfully substituted for the formal
parameters of a given parameterized module, views which show
explicitly hov a module satisfies a given theory, and module
expressions which allow modification of modules by adding, deleting
or renaming functionality. His approach would be implemented by
tools in the Ada Programming Support Environment outside of the
standard Ada language processing tools.

Litvintchouk and Matsumoto address the problem of designing an
Ada-based software system whose modules will be maximally reusable.
Their proposed methodology involves the use of two-level nested
generic modules (i.e., generic modules that, when instantiated,
yield other generic modules that must themselves be instantiated to
get the final modules). They also discuss a method for applying
mathematical category theory to the specification of the semantics
of reusable module interfaces.

Two studies describe work done on metrics for software
reusability. Boehm suggests that metrics be used on each
characteristic of the software to compose an overall software
quality metric, which can then be used to evaluate the component and
its application. Presson discusses a set of metrics to be applied
to the different characteristics.

Boehm stresses the importance of the human interface in design-
ing reusable software. Ultimately, a human being must create the
inputs and analyze the outputs of many systems. He recommends the
use of free-form input to increase the flexibility of use. He also
discusses the need for flexibility in the I/0 and format definitions
to maximize reusability.

Hibbard actually presents a case study on reusable software in
his presentation on queues. He discusses all the elements of a re-
usable package, in particular, the semantics directly contained in
the package specification as well as additional semantics, to be
specified in the documentation, that have an impact on the correct
reuse of the component. He presents the code for a generic blocking

16

and nonblockdng queue, discusses the implementation chosen as veill
as alternate implementation choices. In discussing the
alternatives, he explains why those designs were not selected.

Preseon' s report focuses both on reusability and on inter-
operability. He analyzes the costs and benefits, concluding that
the increased initial costs are soon recovered by the overall long
term cost savings. Among the indirect costs, are the inability to
foresee all potential reuses and the negative impact on efficiency.
There are several categories of reusability, namely module, func-
tional, and system. Within each of these levels, there may be
partial or total reuse. The degree of reuse increases with the
degree of abstraction embodied in the component. In this report,
Presson documents some general guidelines, summarized here. The
algorithm should be certified and test data and reports should be
made available to the reuser. The implementation language should be
standard, not dialect. The code itself should be fault tolerant,
well documented, and parameterized. In addition to these recom-
mendations, he suggests that some application areas are more likely
to produce reusable components than others. Command and control
applications, some support software, and business applications are
among the most likely, while missile systems are the least.

Rogers discusses a successful instance of reusable software in
IBM's Toronto Laboratory. Business applications were found to share
certain common design features which were adapted into a layered
architecture. The main programs are identical when viewed as a
sequence of initialization, processing and shutdown. The process-
ing, in turn, consists of some combination of well-defined
categories, which become a top-level decision logic module. The
third level, the detail processing, requires the most individual
programing effort. The support and utility functions, which
comprise the bottom layer, are accessed by all layers.

Goodenough discusses the reasons that reuse of previously
written modules seldom occurs. There are four reasons: descriptive
inadequacy, inadvertent loss of generality, overgenerality, and
partially met needs. To overcome problems of descriptive inade-
quacy, an abstract model is helpful. Such a model characterizes
common (invariant) capabilities shared by sets of reusable modules.
The other problems relate to the design of interfaces. Designing
interfaces that plape the fewest restrictions on implementation
options is difficult in any language, including Ada. The paper
formulates an abstract data type and its operations to illustrate a
model for a reusable component.

Wegner discusses reusability in a more global context, that of
capital-intensive software technology. He discusses the economic

17

...

justification and explores this technology from four angles: soft-
ware components, programming in the large, knowledge engineering,
and the accomplishments and deficiencies of Ada. He examines the
role of abstraction, libraries, and programming development environ-
ments in the development of software components. He discusses
examples of reusable concepts and products, such as application
generators.

Neighbors discusses another approach to reusable software using
models. He describes a particular modeling technique using the
Draco System. He focuses on the specification and organization of
the problem domain and the rules for transformation. Furthermore,
he presents examples and experience with the Draco system.

Is

Fx~~~~flP7 7. 4 .~-' b.r

SECTION 4

DESIGN GUIDEUiNES

As noted earlier, reusability is first and foremost a design
issue. If a system is not designed with reusability in mind,
component interrelationships will be such that reusability cannot be
attained no matter how rigorously coding or documentation rules are
followed.

In examining the problem of designing reusable software, we
find that many of the recommendations simply restate some of the

V recognized principles of good software design. For example, the
principle of abstraction is central to these recommendations.
However, this observation does not lessen the validity of these
recommendations, but rather provides additional motivation for the
recognized design principles.

We have seen that attention to good design prircciples does not,
in itself, lead to reusability, because there are a variety of ways
to apply design principles that do not necessarily support partic-
ular reusability goals. Designers are confronted with many tradeoff
situations where the choice made might depend on an understanding of
reusability goals. For example, we examined a well-structured Ada
implementation of a message switching application for the possibil-
ity of reusing the software that supported creation and interpreta-
tion of particular message formats. We found that, for efficiency
reasons, this code was too enmeshed in other parts of the applica-
tion to be reused. The designers made a different choice than they
would have made if they had been designing the reusability.

The goal of these design guidelines, is to explain how various
design principles support reusability so that the designer can take
this into account when making design tradeoffs.

The following subsections discuss several critical issues
relating to the design of reusable software. These include the use
of models, layered architectures, interface considerations, and
efficiency tradeoffs.

4.1 MODELS

A model provides a common viewpoint for stating software
needs and matching these needs against existing
capabilities.

19

-7, 1 7! 777. 7- 7 T ~T 7

In attempting to increase software reusability, there are two
basic problems to be solved:

o How do you ensure new systems are designed to reuse existing
software when appropriate?

o How do you design software so it is likely to be usable in a
variety of systems not yet implemented?

Software will not be reused unless a system is explicitly
designed to take advantage of existing reusable software. This
means system designers must recognize and take advantage of
possibilities for software reuse. On the other hand, if the
existing software has not been designed correctly, it will not fit
conveniently into any other system, and so will not be reused.

These twin problems can be avoided by having in mind a model
for viewing the functionality provided by the software that is to be
reused. The model provides a common viewpoint for expressing the
needs of a design and the capabilities of existing software, and so
increases the probability of finding a match between needs and
capabilities. Designing software to fit a model also increases the
chance that it will be able to be reused in other systems.

For example, if one wants to create reusable software for
manipulating graphic displays, then one first has to define a model
of the semantic functions needed to establish and manipulate a
certain kind of display interaction. As a model, one might choose
as a model the idea that a form will be presented to a display user
who will be asked to fill in the fields of the form, following
prompts on the display indicating what kind of data is to go in each
field.

Even a general descriptive model, such as this fill-in-the-
blanks model, helps establish a basis for reusability. A designer
of a system can ask himself whether any capabilities needed for his
system can be provided within this framework of interactive display
processing. If so, he can further consider the detailed function-
ality provided by software designed within the framework to see if
his specific needs can be met. This is an example of how the
existence of a general model can influence the design of a system so
existing software modules can be reused.

For the person providing the modules, the potential for
reusability will be increased if the major needs of possible future
users are met by the functionality provided by the modules. Equally
important, software use does not make it impossible to meet some

20

requirement. For example, the Ada TEXT 10 package assumes that
after opening a text file, the current Tine, page, and column
numbers are all one. This assumption precludes opening a file vith
the intention of appending data to the end, even though such
capabilities are supported by many operating systems. If having to
append to files is important in order to have an efficient program,
then Ada TEXT_10 cannot be reused in this context. The design of
the interface has made inaccessible a desired and supported
capability of the underlying operating system because the Ada model
of files did not include the possibility of appending to the end of
an existing File.

One example of the use of a model to improve reuse of softvare
is the Graphical Kernel System (GKS) [ISO Draft International
Standard 7942, June 1983]. GKS is a conceptual model of a graphics
system and a set of function the system supports. Developers of
graphics software (and sometimes, hardvare) are using this model in
deciding what functions to provide. Users of graphics equipment can
write programs calling the GKS functions with some assurance that
they will operate satisfactorily for a wide range of graphics
devices.

GKS is a language independent model. The following kinds of
functionality are among the ones provided:

POLYLiNE draw a sequence of connected straight lines
between a list of points

FILL AREA fill the area defined by a sequence of points
with a pattern

In addition, there are attributes controlling the form of
output, e.g., the line width, line type (solid, broken, blinking,
etc.), and color.

Since GKS is language independent, a binding to a particular
language must be provided to ensure people use the same calling
conventions for invoking the GKS functions in that language. A
system designer can decide how to phrase his programming needs in
terms of the functionality provided by GKS, and then given a binding
to a particular language, use the language specific conventions for
actually obtaining the functionality. To improve portability and
reusability of software, any system using graphics devices ought to
consider developing its graphics functions in terms of the GKS
proposed standard.

21

I~veopmodels by geerlizn frmra problems,

In developing a model to serve as the focus for implementing
* reusable software, take a real problem, and generalize it by finding

a class of problems that it belongs to. For example, the require-
ments of a specific system might say that forms have to be entered
in particular ways. Instead of developing software to satisfy just
these immediate needs, generalize the requirements somewhat to
include other kinds of form completion. Then, design the software

* (using the guidelines expressed elsewhere in this document) so it
meets the more general requirements, but can still be customized
(made efficient) for the specific requirements that existed
originally. By using this approach, one can design software that
meets a specific short-term need, yet help to ensure the software
will still be useful in solving similar problems.

As an additional example, consider a message preparation system
that assists in the creation of messages chosen from a specific set
of possibilities. Each message has a specific set of rules that
determines its form and the allowable contents for its various
parts. Rather than define the system to handle exactly the
specified set of messages, it would be better to define a model in
which we can describe the specific format of particular messages.
We then build the system to process any message that can be
described by this model. Finally, we supply the description of the
specific messages to be processed. This allows the same message
preparation system to be reused in other application requiring
different sets of messages to be prepared.

The key to making software for a particular system reusable in
other similar systems is to establish a model at the outset that
encompasses both the immediate and long-term needs. Then, design
interfaces that are suitable for the general model rather than for
the immediate need.

4.2 LAYERED ARCHITECTURE

A layered architecture contributes to reusability by
separating concerns into discrete layers that can be
separately replaced to tailor the software function and
performance.

A layered architecture is a software design in which the system
is partitioned into an ordered series of discrete layers, each of
which implements a specific abstraction. each layer provides a set
of services to the layer above it. it, in turn, uses the services

22

%A..-
-- .. t

provided by the layer below to carry out its own work. In effect,
the layers below a given layer define an abstract machine that is

r used by that layer to carry out its functions. Each layer has
specific, defined interface to the layers directly above and below
it in the hierarchy. The general structure of a layered archi-

tecture is illustrated in Figure 4-1.

A layered architecture contributes to reusability because it
allows individual layers to be independently replaced to tailor the
function or performance of the system, thus limiting the effect of a
change to a relatively small part of the system. Since it is rarely
the case that a moderate to large system can be reused exactly,
limiting the effects of the required changes can significantly
reduce the effort required to modify the system for reuse.

An example of a layered architecture for a simplified form of
data management system is shown in Figure 4-2. The bottom layer,
the physical device layer, does the physical I/0 to the data storage
devices. This may include issuing actual I/0 device commands,
handling device interrupts, and dealing with device errors. This
layer supports the abstraction of an idealized I/0 device that
simply and reliably reads or writes data blocks from one or more of
a large set of possible physical device addresses. If the entire
data management system was to be reused in another system that had a
different type of physical data storage device, only this layer
needs to be changed to deal with the new device.

The next layer from the bottom, the file I/0 layer, makes the
data storage appear to be a set of named files that may be created,
destroyed, read from, or written to. It uses the physical I/0
services provided by the physical device layer to read and write
directories, file extent blo-aks, and actual data files. A change in
the directory structure, or in the way in vhich variable length
files are handled may be made by changing only this layer.

The third layer, the data access layer, provides access to
particular pieces of information. It uses the file I/0 facilities
to store and retrieve the desired data items. It may arrange, for
example, for data records to be stored in alphabetical order
according to a particular key field. Modifications to the data
access method may be made by changing only this layer.

The top layer, the data manipulation layer carries out specific
operations on the data in the database. It uses the data access
layer to get to the data. Changes in the way data is manipulated
can be made by changing only this layer.

23

a-

II

a LAYERn

LE I

LAYERAYER

LAYER I INTERFACES

LAYER I I
- lAYERI

Figure 4-1. Structure of a Layered Architecture

24

- DATA MANIPULATION
LAYER REQUESTS

DATA
4 MANIPULATION

LAYER

__ [__DATA ACCESS REQUESTS

DATA
3 ACCESS

LAYER

I ~ FILE CREATE, DESTROY,
READ, WRITE REQUESTS

FtILE
2 110

LAYER

DATA B3LOCK
READ, WRITE REQUESTS

PHYSICAL
DEVICE
LAYER

*_________1/O DEVICE COMMANDS,
INTERRUPTS

PHYSICAL
DEVICE

Figure 4-2. Layered Database Management System

25

To reuse this data management system in a different application
wiii typically require some degree of change, most likely to the
physical devices supported or to the data manipulations that are
done on the data. Either of these changes (and others besides) can
be handled by changing only a well-defined part of the system. This
reduces the effort and, perhaps more importantly, reduces the
opportunity for error involved in modifying the data management
system for the new purpose.

It is important to note that, when implementing a particular
application using such a general-purpose model, one sometimes ends
up with layers consisting of very little processing -- perhaps
nothing more than a pass-through to the next layer. This should not
be cause for alarm, and any performance penalty should be eliminated
by good compiler optimization. Section 4.4 further discusses such
optimization issues.

Another example of a layered architecture is the widely used
International Standards Organization (ISO) Open System Interconnect
(OSI) model of a communications system. This 051 model uses a seven
layer architecture to separate the various aspects of the comunica-
tions task.

I A reusable application components become more of a reality, it
is reasonable to imagine that generic system architecture models
like the ISO/OSI model can be de~eloped for other application areas.
For example, perhaps a generic C I system architecture could be

developed. Such an architecture effectively defines a taxonomy or
classification of types of software components. This would provide
the standardized functional model essential to component reuse, as
components. Also essential to reusability, though, is standardiza-

tinof interfaces between the generic types of components. We can
expect the technology to move more slowly in solving this more
difficult problem.

An interesting illustration of this sort of evolution occurs in
compiler technology. Today there is a fairly widely accepted view
of the structure of compilers -- at least most will agree that
compilers have a target-independent front end, some sort of "middle"
global optimizer phase, and a target-dependent back end, and that
there are well-controlled interfaces among these. Simply, the
agreement on this structure has allowed for reuse at some level; for
example, high-level designs for global optimizations appear in the
literature and can be adopted by all implementers because they
observe this accepted architecture.

26

To the extent that the interfaces between the components can be
standardized, much greater reuse is possible and has been widely
demonstrated. For example, a particular compiler front end is
reusable in building a compiler that generates code for the same
language but for new target -- the nev code generator back end must
simply observe the same interface to the front end. However, we
have not seen such reuse across development group boundaries (i.e.,
different vendors) because of the complexity of the interface. The
recent effort to define a standard intermediate language, DIANA, for
Ada compilers, has tried to take this next step. However, this
cross-project reuse has not yet been demonstrated, and some
difficulties are anticipated. This is because the DIANA definition
probably does not fully define the entire interface between a
compiler front end and back end.

One of the most challenging aspects of reusability, is the
issue of rigorously defining and standardizing interfaces. The next
section examines this issue in more depth.

4.3 INTERFACES

Veil-defined and documented interfaces are the key to
reusable software components.

The interfaces of a software component define the role of that
component with respect to the "outside world". A component is com-
pletely specified by its interfaces. For the potential reuser of
the component, the interface definition is a basis for determining
possible component reuse and a guide for using the component. This
view is analogous to that of a hardware chip, which can be con-
sidered to ke specified by its pin connections and the functional
descriptions of their roles.

The component reusable designer must analyze and develop a full
understanding of the kinds of interfaces that component can have
with its users. He must be aware of all interfaces of the
component, whether explicit or "understood." There are two reasons
for this:

o The designer must consider the interfaces to ensure that
they are the right kinds of interfaces to support the degree
of reusability that he requires, i.e., that they are neces-
sary and sufficient for his requirement.

o Each interface must be fully documented to permit the user
to interface correctly with the component.

27

The interfaces of a reusable component should be suffi-
cient to provide the necessary flexibility and generality,
but should not be so extensive as to limit the potential
situations in vhich the component can be reused.

In general, a component with fewer, simpler interfaces is more
reusable than one with a greater number of more complex interfaces.
However, the interfaces must be adequate to provide the required
generality of function. This can be described as "necessary and
sufficient" interfaces, meaning:

o Interfaces should provide the reuser with the ability to
parameterize or customize the component within the intended
bounds of reuse. A component with no such interfaces would
probably not offer sufficient generality to be of any use.
A simple example is a polynomial evaluation function that
lets the user specify the order of the polynomial, vs. a
function that only handles polynomials of order 4.

o Interfaces should be limited to those specifically required
to support the intended degree of reuse. A large number of
interfaces may be indicative of an attempt to be too general
or to handle too many special cases. For example, a
function that was able to evaluate all possible mathematical
expression would almost certainly demand a too-complex
interface and too much routine overhead to be of any
practical use.

Both of these guidelines refer to the "intended degree of
reuse" or the "required generality of function." This indicates
that a component intended for reuse should implement some single,
well-defined functional abstraction. The component designer should
define the abstraction to be implemented and should clearly bound
the scope within which he expects the component to be reused, and
the degree of generality to be supported. He should then define his
interfaces with this view in mind. (See the discussion of models in
Section 4.1.)

The concepts of coupling and cohesion are useful in considering
the interfaces of a software component intended for reuse. This is
simply another way of viewing the points made above. A component

28

with low coupling is one vith simpler, fewer interfaces. A com-
ponent with high cohesion is one that implements a single functional
abstraction. Established measures of coupling and cohesion are a
way of analyzing the reusability of a component from the standpoint
of the necessity and sufficiency of interfaces.

The interfaces of the component should be explicitly
enumerated, classified by type of interface, and

considered for necessity and sufficiency.

As noted above, the designer of the reusable component must
carefully enumerate the interfaces of his component, and must con-
sider the degrees of coupling implied by the interfaces. Figure
4-3 is a taxonomy of interface types that may occur between the
reusable component and its reuser. The kinds of interfaces are:

a. Reusable component called via subprogram call by reuser.

b. Reusable component calls subprogram of reuser.

c. Reusable component is a task with an entry called by
reuser.

d. Reusable component is a task that calls an entry of the
reuser.

e. Reusable component shares memory with subprogram of reuser.

f. Reusable component is a task sharing memory with task of
reuser.

g. Reusable component communicates with reuser via a shared
file with one writing and the other reading.

h. Reusable component communicates with reuser via a shared
file with simultaneous access by both.

i. Reusable component communicates with reuser via a message
passing or "mailbox" mechanism.

J. Reusable component sends data to and/or receives data from
reuser via a communication channel.

k. Reusable component and Reuser have some additional "under-
standing" about one another's behavior. (This is probably
not independent of the other classes, but it may worth
calling attention to as a separate dimension.)

29

4'.. ...

S

I

A I ii
m ii

I . ii
II

Ii a

U

Si

I ill
a

I
Iii

I
I iii

I

Figure 4-3. Taxonomy of Interfaces

30

....................................
U *.~..

T7

The subprogram and entry call interfaces can be further decom-
posed to consider modes (i.e., in, out, and in out) and types of
parameters.

These kinds of interfaces can be evaluated in terms of the
degree of coupling they represent. In general, the more tightlyI coupled interfaces are shared memory interfaces and shared files
with simultaneous access. Interfaces via task interaction are more
tightly coupled than subprogram call interfaces. Note that lots of
interfaces, or lots of parameters, increase coupling regardless of
the kind(s) of interface.

Section 6 gives documentation guidelines for each type ofp inte rface.

4.4 EFFICIENCY

On first examination, it would seem that designing software for
reusability would lead to overly general software with poor perform-
ance characteristics. Software designed for reusability will often
have capabilities that are unnecessary for a particular user of that
software component. These extra capabilities could negatively
impact efficiency. However, the proper Use of Ada, and the use of a
good optimizing Ada compiler can significantly limit the negative
impact of these capabilities. This section will address two topics.
The first topic addresses the impact that software designed for
reusability has on performance. The second topic deals with Ada
language and compiler measures that can be taken to minimize this
impact on efficiency, without deleting the additional capabilities
that are found in reusable components.

4.4.1 Areas of Impact

The primary cost in using a software component, designed for
reusability, comes from the extra generality that must be provided.
A properly designed reusable component will be designed to be usable

* in as wide a range of applications as is feasible given the scope of
the component's design objectives. From the viewpoint of an appli-
cation using that component, the following sorts of extra generality
are often unnecessary.

o Extra parameters to provide more flexibility

o Code to check conditions that will never occur

o Extra subprogram call levels to mask detail

31

7I.,.,

o Extra subprograms that are only used by some users of the
component.

The following paragraphs will examine the necessity of using these
features in designing a reusable component. The use of these
features will impact efficiency for the user.

Extra parameters to provide more flexibility. Extra parameters
for a properly designed reusable component are only unneeded in the
sense that the equivalent information could have been encoded into
the algorithm of the reusable component with no loss of function-
ality for the particular application. However, in order to support
multiple applications with differing requirements, the reusable com-
ponent must allow the information to be encoded in a flexible
manner. Traditionally, this has been done by adding extra para-
meters that act as switches to control the algorithm. An example
might be a switch to indicate whether the answer should be calcu-
lated with extra precision or not. Within a particular application,
that decision is generally the same for all uses of the component.

6 This will impact efficiency due to the extra overhead of passing a
parameter that never varies.

Code to check conditions that will never occur. For a reusable
component to be useful, it must robust. This implies that it will
act in a consistent manner even in the presence of anomalous inputs.
Quite often, an application can guarantee that these conditions will
not occur. Yet in a more limited language than Ada or with a naive
Ada compiler, the user would have no means of communicating this to
the compiler so that the compiler can take advantage of the informa-
tion. The presence of this unnecessary code will adversely impact
efficiency.

Extra subprogram call levels to mask detail. One issue that
often arises in attempting to make use of reusable components is the
issue of almost reusable components. These are components that do
not quite match the requirements of the particular application. For

instance, the types of the parameters might differ or the calling
conventions might differ from those used in the rest of the applica-

pnnsis the use of extra subprogram call levels. These call
leesserve to transform the desired use into the available

capabilities and vice-versa. This allows the user of a reusable
component to use it in the manner that is most appropriate for the
application, leaving the task of transforming the use into the form
expected by the reusable component to the extra subprogram level (or
filter). This will impact efficiency because of the extra call that
the filter imposes on all uses of the reusable component.

32

Extra subprograms that are only used by some users of the com-
ponent. Quite often, the software design component will lead to th
packaging of related capabilities in a single Ada package. For
instance, subprograms to calculate the transcendental math functions
might be grouped together in a single package both for convenience
of packaging and because they might share some common subprograms
such as subprograms to evaluate series expansions. However, a user
may only care about a limited number of the subprograms. A naive
implementation will impose a significant space penalty because it
will incorporate all of the subprograms whether or not they are
used.

4.4.2 Improving Efficiency

Although it is true that designing code for reuse can impact
efficiency, the proper use of Ada, in conjunction with a good com-
piler can limit much of that impact. This section will not attempt
to address in detail how to use Ada and the Ada compiler to minimize
the impact. That will be addressed more completely in the remaining
guidelines sections. It will rather highlight how particular capa-
bilities can ameliorate the impact of the issues raised in the
previous section. The capabilities that can help on these issues
include the following:

o generics

o inline code

o constant folding and dead code elimination

o subunits

Figure 4-4 indicates, for each one of these capabilities, the
impact that they can have on each of the areas of potential
inefficiency. The following paragraphs will look at each capability
in more detail.

In order to eliminate the impact of extra parameters, it is
necessary to be able to communicate to the compiler that this value
is constant. This can be done through several mechanisms. If the
value is constant for all uses of the component within an applica-
tion, then making the parameter into a generic IN parameter that is
specified with the instantiation eliminates the overhead of passing

33

I i 0I

EXTRA
PARAMETERS H M H

CHECKS OFCONDITIONS M M H

EXTRA CALLH MLEVELS

EXTRA HSUBPROGRAM

Figure 4-4. Impact of Compiler and Language Capabilities
on Generality Imposed by Design for Reuse

'4CHECKS OF

". '-'..'.'.'.-..,-%..C-O N DI.T I'O NS,.'.'' -.. .
"

". ". H.," ," .''' '',. "." r ". ': '. " '. '

what is basically an application-specific constant value as a para-
meter to the component. In addition, constant folding and dead code
elimination can be used more effectively in such situations.

Similarly, checks of conditions can be eliminated through a
combination of using generic parameters and dead code elimination.
Values which are used to determine the conditions are specified as
generic IN parameters. These values are then candidates for con-
stant propagation, allowing the condition to be evaluated at compile
time rather than run time. A good compiler will then eliminate the
unneeded code.

If a value specified as an extra parameter is potentially not
constant for all uses, but is constant for each particular use, then
it is appropriate to depend on the INLINE code capabilities. These
will allow the constant value to be propagated into the inlined
code. In general, any time some of the parameters to the call may
be constant, the subprogram is a candidate for inlining. Inlining a
subprogram, in and of itself, does not have that significant an
impact in these situations. However, the use of INUlNE in
conjunction with a compiler that performs constant folding and dead
code elimination can yield major improvements in efficiency.

Inline code is also one of the most effective mechanisms to
lessen the impact of extra subprogram call levels. This is
particularly effective because, in general, the filter subprogram
will be fairly small. Thus, the cost of inlining the call to the
filter is small compared with the cost of inlining the entire
component.

When procuring a compiler, examine its optimization
characteristics carefully. In particular, determine how
effective it is in performing constant folding and dead
code elimination.

As can be seen from the previous discussions, the compiler
optimization characteristics can have a significant impact on
lessening the negative impact of designing code for reusability. In
addition, these capabilities can improve code quality in the absence
of the other capabilities. For instance, a component designed for
reusability might do different things depending on whether the
target machine had a 16 bit or 32 bit word size. That can be
determined by checking a compile-time constant value in the package
SYSTEK. Even a compiler with limited optimization capabilities
should be able to use that constant to eliminate unneeded code.

35

link

From a strict language semantics point of view, a compiler and
linker are required to include all referenced units and their sub-
units in a link whether every component of those units is needed or
not. It is possible to define a linker which includes only those
portions of a unit which are strictly needed, thus saving much cde
space. Therefore, if one has a package of transcendental functions
arnd one chooses to use only the SINE function, an intelligent linker
would include only the elaboration code for the package and the code
for the SINE function and any subprograms that it references.
However, in the extreme this implies that a linker may break apart
the results of compiling single units. Although this is possible,
it is extremely difficult. It is more likely that a linker will
allow the selective inclusion of subunits of a unit. For the case
of the package of transcendental functions, this implies that the
package be structured so that each subprogram in the package is a
separate subunit. The linker will then be able to selectively
include those subprograms which are needed by including the subunit
for that subprogram.

In conclusion, it can be seen that many of the areas of
potential inefficiency can be limited through the proper use of Ada
and an effective Ada compiler. In particular:

o Generics are an effective mechanism for eliminating extra
parameters and tailoring code, especially where the in-
formation provided by the generic is constant for all uses
of the instantiated component. A generic instantiation has
many of the benefits of inline code for things which are
constant across all uses of the instantiation, without as
significant an increase in the required code space.

o Inline code can have a significant impact on code
efficiency. In particular, it will eliminate an extra
subprogram call level. Once that is accomplished, the
compiler is then able to apply some of the other optiniza-
tions that it has available. The disadvantage of using
inline code is it can yield a significant increase in the
amount of required code space.

o Constant folding and dead code elimination are capabilities
that can have dramatic impact on code efficiency. For
reusable software, either generics or inline code must be
used to achieve the full impact of constant folding and dead

36

code elimination. These capabilities can also serve to
lessen some of the negative space impact of the use of gen-
erics and inline code.

o The use of subunits with an intelligent linker can allow a
selective linking capability, thus limiting the size of the
result of the link to only those components which are
absolutely necessary.

When all else has been done, the code can be modified to]
reflect the requirements of the particular application.I

Finally, it should be noted that this section has not addressed
potentially the most effective capability for improving the effi-
ciency of reusable components. This section has assumed that the
users of reusable components would not want to modify the code.
This is not always the case. In many situations, the reusable
components will be modified before being used in a new application
with differing requirements. This modification can be used to
eliminate many of the efficiency problems associated with unmodified
components. This may also be an effective strategy when the appl-
ication must use a compiler that does not effectively support some
of the above capabilities, in particular the optimization capa-
bilities. The reuse strategy may be to adapt the code in the way
that an optimizing compiler would have adapted it if it could have
been used.

4.5 LIBRARIES

Traditionally, reusable software components have been made
available through software libraries. A software library consists
of a collection of subprograms sharing a common purpose. A
programmer, wishing to use one of the subprograms, needs to only
include a call to the appropriate subprogram in his code. At the
time the program is linked, the programmer specifies what software
libraries should be searched in order to resolve references to these
subprograms. It is generally possible to include multiple
libraries, potentially with duplicate entries. The order of search
determines which one is used. There are many benefits to the
libraries form of reuse.

o It enhances reuse by collecting related subprograms into a
centralized location that is readily accessible to the
programmer.

o It usually provides well-defined interfaces as part of the
* documentation of the library.

37

-7 77

o It improves productivity by permitting the programmer to
focus on the critical aspects of the application.

o It provides a flexible sharing mechanism, allowing the
I programmer to incorporate any changes to the library simply

by relinking.

o The programmer can defer selecting the library to be
searched until link time, thus allowing the incorporation of
tailored versions of the components. For example, at link

I time, it is possible to specify whether to include a debug
version of a component or a production version.

However, there are some disadvantages vith this form of reuse.

o If the library is updated without the programmer being
notified, he may get a new version of a component when he is
not expecting one.

o For most systems, there is no checking that the call matches
the subprogram other than that the names match. Thus, there
is no checking of the types and numbers of the parameters
for compatibility. In the extreme case, since it is
possible to search multiple libraries, a different sub-
program from the one desired may be linked in because it is
encountered first in the library search.

Ada presents a different view on the sharing of components for
reuse. Ada utilizes the program library concept which contains all
the units needed in order to link a particular program. How thoseI units become a part of the program library is not addressed as part
of the Ada language standard. In the extreme case, it in conceiv-
able that an implementation would require every unit, that is to be
a part of a program library, be directly compiled into that program
library. In general, implementations will support a more useful
view of sharing. As an example, the ALS permits ACQUiR~s of units
into a program library from another program library. It is expected
that components, that are to be shared, will be placed in separate
program libraries so they can be acquired by any programmer needing
that functionality. Those units would be subject to the same rules
with respect to separate compilation that a unit compiled into the
library would be subject to. In general, these program libraries
containing the reusable components would be collections of related
components similar to the traditional software libraries. There are
many benefits to this mechanism.

38

o It enhances reuse by collecting related subprograms into a
centralized location that is readily accessible to thie
programmer.

o It usually provides well-defined interfaces as part of the
documentation of the library.

o It improves productivity by permitting the programmer to
focus on the critical aspects of the application.

o It ensures that the call to the subprogram and the sub-
program specification match; there is a much lover risk of
incorporating an unexpected subprogram.

o A properly designed sharing mechanism will allow the shared
components to be updated fairly readily. How this can be
accomplished will be addressed later in this section.

o An advanced sharing mechanism would allow the selection of
versions of a compon..t to be incorporated at link time.
How this can be accomplished will be addressed later in this
section.

However, there are some disadvantages with this form of reuse.

o Because some of the capabilities described above are not
part of the Ada language, it is very implementation
dependent how many of these capabilities will actually exist
for a particular implementation.

o Since much of the checking is done at compile time, whenever
an interface to a unit changes, there is a potentially
significant cost for recompilation of affected units.

In balance, however, it can be seen that the Ada mechanism,
when supported by reasonable support for a program library in the
implementation, can provide an effective mechanism for sharing
software for reuse.

Much of this discussion has been predicated on the assumption
of some support for a program library above and beyond the minimum
capabilities required by the Ada language. In order to support
reuse effectively, the implementation must support some form of
sharing. Sharing can take several forms, not all of which are
mutually exclusive:

o Sharing of the contents of an entire program library.

39

o Sharing of an individual unit or hierarchy in a program
library.

o Automatic update of the sharing program library whenever the
shared unit is updated. This may result in recompilations.

o A freezing of the version in the sharing program library
regardless of vhat happens to the shared unit.

o A freezing of the version in the sharing program library,
but with some form of notification capability to notify the

user of the shared package whenever it is updated.

Each of these sharing forms has its advantages in particular
situations. For a particular implementation, it is important to be
aware of how sharing is accomplished so that the programmer can plan
for the consequences of the implementation.

To select flexible versions of units is another capability that
can be useful in some development environments. This is not only an
issue for reusable software components, but an issue in general for
Ada development. This can be supported by an implementation in one
of several ways. They all depend on the implementation being able
to provide the equivalent of variations. A variation is a version
of a component that is different than the original, but is still

p. valid. For instance, it is possible to have a production variation
and a debug variation of a component. The implementation can
provide the flexible selection by supporting variations within the
program library. This would allow the programmer to select which
variation to include at link time. Alternatively, the
implementation could support variations at the program library
level. The programmer would then select which variation of the
program library to use at the time of the link. The sharing

L. mechanisms discussed above'could be used to ensure the libraries

remain synchronized.

Another capability that could be useful is the capability to
limit recompilations to only those strictly needed by the

K requirements of the change. This is not a major issue for reused
software. This is because reused software components will be
generally more stable than a unit under active development. In
particular, the interface will not change frequently. Most
recompilations are engendered by changing an interface.

Ada libraries are not the same as traditional libraries. They
are generally more restrictive than traditional libraries in that
they impose more checks on components users than traditional
libraries. However, these additional checks provide a much higher

40

degree of safety. With appropriate support within the implemnenta-
tion for reusable components, Ada libraries are an effective
mechanism that should lead to the cost-effective development of
reliable software.

41

SECTION 5

ADA INTERFACE GUIDEUiNES

This section presents a set of guidelines for building reusable
Ada interfaces. The Ads features which support reusability include
the different program structuring devices, exceptions, certain data
types, and judicious use of parameter modes. Program structure
encompasses packages, subprograms, generic units, and subunits. The
guidelines on subprograms and exceptions are closely related to
those for packages because of the role exceptions play in defining
parts of a package specification.

5.1 PACKAGES AND SUBPROGRAM

Teabstraction provided by a package should be complete]Ifor a given level of a design.
Completeness in a package specification is an important precept

both for programming in general and for reusability in particular.
A complete abstraction provides the user the full set of operations
he needs to manipulate the abstraction. Without the full set, users
may find it awkward to reuse the abstraction in different applica-
tions. An incomplete abstraction is likely to undergo modifications
and enhancements to its specification, necessitating the reuser to
modify his application. The final result is extensive recompila-
tion.

o creation

o termination

o conversion

o state inquiry

o input/output representation

o state change

Abstraction relies heavily on the use of private and limited

private types in order to give the implementor maximum freedom and

42

to maintain the integrity and consistency of the abstraction.
Because of the language restrictions on private types, it is
paramount that all of these classes of operations be provided. For
non private types, these classes are obligatory to ensure a con-
sistent level of abstraction for The reuser.

The creation function includes both creating and initializing
an object. Termination provides a means of ending the life of the
object, essentially making it inaccessible in the remainder of its
scope. Conversion allows for the change of representation from one
abstract type to another. For example, a conversion function would
take as its input, the string "catamaran" and produce as its output
an object of a variable length string type which evaluates to "cat-
amaran" or vice versa. In this case, the internal representation of
the variable length string object is not accessible for user manip-
ulation. State inquiry functions enable the user to determine the
state of an abstract object. One such function is basically a read
operation; it evaluates the contents of an object, returning, for
instance, "catamaran". Other state inquiry functions allow a user
to inquire about boundary conditions. Consider an abstract file
type. Boundary conditions cover whether the file is empty or
whether its maximum capacity has been reached. Other boundary
conditions refer to end-of-line and end-of-page states. Non-
boundary state inquiry functions return the position in the file
(line and column number), the status of the file (open, closed), and
the mode of the file (read-only, write-only, read-and-write).
Input/output representations are useful for debugging purposes. The
objective is not to debug the abstraction but to allow the user to
debug his application. For example, printing out an entire stack,
he may discover that he has omitted a "PUSH" operation. State
change operations allow the user to modify the contents of an
abstract object. For example, replace all occurrences of the letter
"a" by "y" to yield "cytymyryn."

It is poor design to split an abstraction across several
packages. Completeness does not preclude a layered approach to
software components. In designing a reusable navigation subsystem,
for example, the sensor interface will differ from one implementa-
tion to another. However, this interface can be designed in two
layers so that there is an abstract set of functions through which
the navigation computations communicate with the actual hardware:

43

package Navigation 10 is
procedure Get'(Sensor :in Sensor ID; --top layer

Reading out Float;.

Failed : out Boolean);

end Navigation_10;

with System Sensors;

package body Navigation IO is

Altitude Sensor
SystemSensors.AltitudeTask_Type;

procedure Get (Sensor : in Sensor ID;
Reading : out Float;
Failed : out Boolean) is

begin

Altitude Sensor.Get(...);
Reading :- ...;
if Reading > ... then

Failed := False;
else

Failed : True;
end if;

end Get;
end NavigationI0;

package System Sensors is -- bottom layer
task type Altitude TaskType is

entry Get(... T;
for Get use at 16#OF#;

end Altitude Task Type;

end SystemSensors;

The Ada distinction between the package specification and the
package body is extremely important in light of reusability. The
implication is that multiple package bodies can be developed for a
single package specification, with the desired body selected when
linking the application. (Some Ada environments, such as SofTech's
Ada Language System, support this concept through variation sets in

44

P

the database.) Different versions of a package body can be chosen
for different machines. A caveat is in order here. Different
package bodies may introduce subtle semantic differences. The
predefined package Text_10 appears to be a reusable package. An IBM
and a DEC implementation, however, may differ in the file names that

they allow and the conditions under which they raise some 1/0
exceptions.

Implement bodies of subprograms declared in a package
specification as subunits.

Subunits enhance the reusability of software in several ways.p A subunit is a distinct compilation unit and as such, it forms an
object module that can be separately loaded into memory. By stub-
bing out the subprogram bodies, the programmer may increase the
efficiency of the reusable pieces of software because he maxcimizes
the chance that those subprograms that are not called will also not
be loaded. From another point of view, declaring them as subunits
allows the bodies to be replaced with minimal recompilation. Only
the replacement subunit and its dependents need to be recompiled,
assuming the specification is not modified. As with packages,
different versions of subprogram bodies may be appropriate for
different machines.

5.2 GENERICS

In defining reusable subprograms, situations typically arise in
which it is not clear what action should be taken. Such situationsI. may seem like error situations, e.g., attempting to store an element
in a queue that is full, or attempting to read a file that contains
no more elements. In other cases, it may be possible to let the
user define the boundary condition. For example, if a function is
supposed to justify a "paragraph" so it has even margins, the
processing needed to determine the beginning and end of a paragraph
might be supplied by a user-provided subprogram, thereby increasing
the formatting function's range of applicability.

In general, providing user hooks makes a routine usable in a
wider variety of situations, and so makes it more likely to be
reused.

There are three techniques for providing user hooks:

o generic formal subprograms (i.e., passing user-defined sub-

programs to a general purpose routine)

45

o exception conditions with or without auxiliary routines for
getting additional information about the nature of an ex-
ception situation;

o output parameters that provide information about whether a
routine completed its action appropriately, and if not, why
not.

Generics are widely recognized as a means to construct reusable
program units. The very nature of a generic unit is reusable; the
code found in the template itself is not run. The template must be
instantiated, and it is the various instantiations, or reuses of the
original template, that are in fact run.

The instantiations of the generic unit allow for customization
of the original template. The instantiation allows the user to
specify a set of actual parameters, either in the form of subtype
indications or subprogram names. Ada allows different classes of
generic formal parameters; the particular class used dictates what
kind of reusability is appropriate for a generic unit.

At the most specific level, no generic parameter need be
specified. In terms of reusability, this is the most restrictive
situation, as the reuser cannot tailor the unit at all. The purpose
of such a unit is analogous to derived types: it enables the
programmer to distinguish between entities that otherwise look
identical.

Generic constants allow you to parameterize the
configuration of a system.

In using generic parameters, the most restrictive form is to
declare a generic parameter to be a constant. This allows a user to
specify, for instance, certain system parameters in order to con-
figure a particular system. The bulk of the software developed for
the space shuttle's primary avionics system is reusable.* From one
flight to another, some modifications and enhancements are coded;
however, many of the changes involve changing software parameters
such as load factors, atmospheric data, flight initialization data,
orbit data, some state vectors, etc. Recompiling the software with
these new parameters, of which there are some thousand or so, re-
configures the system for the next shuttle flight.

*Spector, Alfred and David Gifford, "Case Study: The Space Shuttle
Primary Computer System", Communications of the ACM, Volume 27,
Number 9, September 1964.

46

A generic (Boolean) constant allows a user to tailor
unwanted generality of a reusable component.

The author of a reusable program is likely to include all sorts
of checks to ensure that the program does not accidentally crash.
For example, there may be checks on expressions for division by
zero, for exceeding some bounds like minus pi to plus pi, for
checking that a queue is empty or full, for hardware read errors
when reading from disk, etc. Depending on the instantiation, these
checks may not apply because the user may be able to show that the
case being checked for could never arise. An optimizing compiler
may not necessarily recognize such checks as dead code. In order to
"help" the compiler remove those checks and make the resulting code
more efficient such pieces of code can be executed conditionally,
based on the value of a flag which is passed in as a generic formal
constant.

Move "constant" parameters out of a subprogram call and
make them into generic parameters.

A generic formal constant can be used to define an optional
part of the functionality of some subprogram. Many subprograms
contain optional processing whose execution depends on the value of
some input parameter or flag. Over many calls to this subprogram
the actual parameter may have the same value, in effect acting like
a constant. This subprogram may be made generic by eliminating this
parameter from the specification and listing it as a generic formal
parameter, specifically, a generic formal constant. Such a modi-
fication improves efficiency because it allows the compiler to
remove the unneeded code.

Provide generic formal subprogram parameters as user
"hooks":

If the user can help specify a boundary condition;
If a situation is encountered that would prevent
successful completion of an action and the user may
be able to fix the situation so processing can
continue.

A default subprogram should be provided to handle the
"normal" case.

The most general technique for providing a user hook is to
specify a reusable routine as a generic unit with formal subprogram
parameters. The formal subprogram is called when a special situa-
tion is encountered for which the user can provide helpful advice.
For example, a routine for justifying the text of a paragraph could
he paragraph, based on the current position of a pointer, using
user-provided rules for determining these boundaries. A generic

47

formal subprogram parameter can be declared for this purpose, e.g.,

-- default method for finding paragraph boundaries
Default Find ParagraphBoundaries

(C~rrent Position : in ... ;
Beginning_ofParagraph : out ... ;
Endof Paragraph : out ...);

generic
with procedure

FindParagraph_Boundaries (CurrentPosition : in ... ;

Beginning_ofParagraph : out ...;
End of Paragraph : out ...)

is Default find Paragraph Boundaries;
procedure JustifyParagraph (CurrentPosition :

The body of Justify Paragraph will call Find Paragraph_
Boundaries at the appropriate point. A routine is also provided
that uses the "normal" definition of how paragraph boundaries are
determined. This routine will be invoked if no routine is ex-
plicitly provided by the user when JustifyParagraph is invoked.

As another example, the proper response when encountering the
end of volume mark while writing a tape might be to mount another
volur-e and continue writing. An alternate response might be to
terminate processing. Since one possible response to this situation
requires taking some action and then continuing at the point where
the situation was encountered (i.e., continue writing tape), it is
reasonable to allow for a user-defined subprogram that takes
appropriate action. For example:

generic
with procedure End of Volume Processing is

Default Ends f Volume Processing;

package Record 10 is

procedure Write (...);

end Record_10;

Since one user option is to discontinue processing, the
designer of the reusable routine must decide how a user is to
indicate this. There are basically two ways: Endof Volume
Processing can raise a specific exception (e.g., Record_10_ ror) if
no further attempts to write are desired; or End of Volume_
Processing can be declared as function whose return-value indicates
whether processing is to continue or not.

48

If EndOfVolumeProcessing raises an exception, then the
exception should be passed through to the caller of Write. If Write
needs to do some cleanup before passing the exception on to its
caller (e.g., if it needs to release some space), the programmer can
write:

begin
End-ofVolumeProcessing;

exception
when Record_10_Error => -- user wants to atop

-- processing
-- prepare to leave Write

raise Record_10_Error; -- pass the exception on
end;

A similar approach would be used if End ofVolume Processing were a
function whose return value indicates whether writing is to continue
or not.

5.3 ERROR HANDLING AND EXCEPT~IONAL CONDITIONS

For each assumption a subroutine depends on to operate
correctly, define an exception that is to be raised when
the assumption is violated.

Instead of defining a routine such that its user is responsible
for ensuring that certain assumptions are satisfied, specify excep-
tions that are raised when these assumptions are violated. For
example, instead of saying "Don't call the Stack.Pop function if the
stack is empty", say, "Stack-Pop raises Stack-Emnpty if called when
the stack is empty". Raising an exception allows the user to decide
what to do about the situation. In essence, the usability of the
routine is extended to in~clude empty stacks.

Violating this Guideline

Some assumptions are expensive to check. For example, a lookup
routine that uses binary search must assume the table being searched
is sorted. If it is not sorted, the search will return incorrect
results. Checking that the input table is sorted is expensive, and
since the reason for using binary search is because it is fast,
making such a check would be contrary to the purpose of using this
search method.

In short, it is not always reasonable to check every assumption
underlying the correct behavior of a subprogram.

49

For every exception declared by a package, define a
function that indicates whether if the exception would be

raised.

Exceptions are raised to indicate the existence of conditions
that prevent a routine from producing its normally expected result.
A package of routines is more reusable (i.e., usable in a wider
variety of situations) if functions are specified that check for the
presence of exception situations in advance of their occurrence.
For example, a stack package should declare the exception
Stack.Empty, which is raised when Stack-Pop is called for an empty
stack. In addition to this exception, a function should be
declared, Stack-IsEmpty, which returns True if the Stack is empty.
Similarly, a file h~andling package should provide the function if_
EndOfFile as well as the exception End ofFile to indicate when
there are no more items to be read.

These functions are useful to control program logic, e.g., for
specifying a guard of an accept statement:

select
when not Stack.IsEmpty > -closed if nothing is

-- on stack

accept GET (...) do
Item :- Stack-Pop; -- no exception will be raised

end Get;
or

when not Stack-IsFull 0> - closed if stack is full
accept PUT (...) do

Stack-Push (Item); -- no exception will be raised
end Put;

end select;

If such functions are not available, it is awkward to provide

the equivalent capability by just using exceptions.

Violating the Guideline

Functions should not be provided when the amount of computation
needed to decide whether the exception will be raised is tantamount
to performing the function that will raise the exception. For
example, when writing a matrix inversion routine, an exception
should be raised if the matrix does not have an inverse. The best
vay to discover whether a matrix has an inverse is to try to invert
it. In this case, it would not make sense to specify the function,
Inverse-Exists, since invoking this function will be equivalent to
attempting to find the inverse.

50

after the user has fixed the problem that caused the

It is usually more convenient to let a subprogram raise an
exception when a problem is encountered rather than to attempt to
fix the problem (possibly by calling a user-defined subprogram) and
then continue processing. This is the case if it is relatively
cheap to retry the operation that has encountered the problem. For
example, when writing a tape, if the end-of-volume is encountered,
it is quite reasonable to raise an exception, since not much work is
lost by calling the Write routine again after a new tape has been
mounted. But, there are some cases where considerable computation
would be lost if an exception is raised. In such cases, it is
better to attempt to fix the problem by calling a user-provided
formal subprogram.

It is sometimes the case that a lot of information can be pro-
vided to a user when an exception situation is encountered. For
example, tape drives can signal a variety of error conditions, rang-
ing from lack of a write ring, to parity error, to end of tape, etc.
Instead of defining one exception for each possible error condition,
it may be reasonable to lump all the situations together in a single
exception, e.g., DEVICE ERROR, and then provide an additional sub-
program that can be called to obtain all information available about
the reason for raising an exception. Providing a routine is more
general than providing a global variable that can be read after an
exception is raised since any computation involved in producing the
information need not be done unless the user wants the information.

In general, if additional information can be provided about the
nature of an exception situation, provide a subprogram that will
give this information to the user. This subprogram needs to be
defined as part of the package interface.

5.4 PARAMETERS AND TYPES

51

In designing reusable software, it is desirable to provide safe
packages and safe abstractions. When using private types, one way
to make the package safer is by guaranteeing that every object a
user declares of that type will be initialized. When the imple-
mentation is naturally a record type, this guideline is easy to
follow as the package author provides default initial values for
each record component. For private types whose natural implementa-
tion is a scalar or array type, the designer treats the type as the
type of an enclosing record component. A default initialisation can
then be provided as before for this single component record. Al-
though the enclosing record does add another layer of data struc-
ture, it is transparent to the user of the original abstraction. An
optimizing compiler will probably be able to optimize out the record
layer in manipulations of objects of this type in order to make the
resulting code more efficient.

out mode parameters.

When calling subprograms whose specification includes para-
meters of mode in out, the user should be careful that any actual
parameters are initialised prior to the call. The subprogram
writer, however, gains implementation flexibility which outweighs
the disadvantage cited above. This flexibility results from the
ability within the subprogram to read the value of the parameter.

An abstraction being implemented by a package might have
several possible representations. In order to allow alternative
representations without having to recompile the package specifica-
tion, use an incomplete type and an access type:

package St icks is
type Stack_ Type is private;

private'
type Specific StackTpe;

Ftype Stack_Type is access SpecificStack_Type;

end Stacks;

The decision about how Stacks are really implemented is now deferred
to the package body, where SpecificIStackType is defined. Alter-
nate implementations of stacks can be provided by providing differ-
ent package bodies. Since the alternative implementations can be
provided without modifying the package specification, the Stack

52

implementation can be changed without having to recompile all the
programs that use vhe Stack package.

53

* SECTION 6

DOCUMENTATION GUIDELINES

Documentation is important in any software development, but is
particularly critical for reusable softvare. Documentation really
determines whether the software will be reusable or not, because it
allows the potential reuser to determine whether the component meets
his needs and then explains how to use it. There are, then, two
main functions of the documentation of reusable software:

o It must explain what the component does in adequate detail
to permit the potential user to determine whether it can be
used in his application.

o It must provide a full explanation of how to use the corn-
ponent.

If either of these objectives is not met, it is likely that the
component will not be reused. It has been observed' that one of the
main reasons reusability fails to occur is descriptive inadequacy,
in which a user fails to find a component meeting his needs because
the description of the module's function does not match his own
description of his needs. A precise, complete method for describing
reusable software components will help overcome this problem. The
need for a clear description of how to use the component is obvious.

F If the user cannot figure out how to use the component, he will find
another alternative, and reusability will not occur.

Reusable software documentation has two main purposes --

to tell what the component does, and to tell how to use
it.

*Goodenouih, J.B. and Zara, R.V., The Effect of Software
Structure on Software Reliability, Modifiability, and
Reusability: A Case Study and Analysis, Final Report,
SofTech, Inc., Waltham, NA, Contract DAMA 25-72C 0667, 1974.

54

The role of the documentation for a reusable software component
in analogous to the role of a hardware component's specification.
The hardware component's specification will specify the precise
function of the component and will fully describe how it is to be
connected in to the rest of the system. The precise meaning of each
pin connector will be given. If the chip is user-customizable,
instructions for this will be provided. The documentation may say
something about the internal function of the chip if that may be of
significance to the user, but it will not provide detailed design
information.

TDocumentation for a reusable tae component must stan

alone, providing everything the potential user or users needs to
know. Again, the analogy to a hardware chip is relevant. The user
of the chip cannot be expected to delve into the chip's design
description, or to call up the designers with questions, in order to
understand what it does and how to use it. Similarly, the user of a
software component cannot be expected to study the component's
design or make contact with its designers. (Today, reuse of all but
the simplest sort typically requires such study and personal contact
when it occurs at all.)

Reusability documentation is distinct from the normal
required documentation for a software component, though it
may share information.

Reusability documentation has two components, meeting the two
purposes described above. These are the functional description of
the component and the interface description. Typically these two
components would occur in the same document -- a Reusable Component
User's Manual. This document should be considered distinct from
other documentation that may be required, for example MIL-STD
documentation for a component developed on a government contract.
However, as the following subsections will illustrate, the docu-
mentation required for a reusable component is quite similar to that
required in a B-5 software specification, considering the reusable
component as a Computer Program Configuration item (CPCI). A B-15
specification describes the function of a CPCI within a system, and
presents its interfaces to the rest of the system. This view of a
"black b7,i" with well-defined function and interfaces is essentially
the view appropriate to documenting a reusable component. However,
it is not oriented toward the specific task of reusing the compo-
nent, and does not contain all the desired information, as may be
seen by examining the Ruggested outline given below. We recommend
that, to maximize the likelihood of reusability happening, the

55

e_ -- ~ I~4~%

separate reusability documentation be developed. It can refer to
aprpit etoso te xsigdcmnainta contain
th edddti eie.A h iiuthe suggested contents
given beo hudb sda hcls neaiigexisting
documentation to assess its adequacy.

The reusable component must, of course, have design documenta-
tion like any other software. If it is being developed on a govern-
mient contract and intended for reuse on other government efforts,
the NIL-STD documentation will be necessary to the other projects
that reuse it for inclusion in their own project documentation.

The following two sub3ections provide specific guidelines on
the tvo components of the reusable component document, the Func-
tional Description and the Interface Description.

6.1 FUNCTIONAL DESCRIPTION

characteristics of the reusable component.

The purpose of the Functional Description is to describe what
the reusable component does. This includes a statement of the
general function of the component, and a detailed presentation of
operational characteristics. It is, in effect, a product definition
for the component.

A major function of the document is to allow the potential
reuser to determine whether the component in fact meets his needs.
The document also provides other general user information.

Figure 6-1 is a suggested outline for a Functional Description.
While other organizations. of the material can be selected, this out-
line should serve as a checklist to determine whether the necessary
information is included. The following paragraphs briefly describe
the contents of each section.

6.1.1 Section 1 -- 7unctional Summary

This section should present a concise description of the basic
function performed by the component. The key consideration in
writing this section should be the ability of the potential user to
determine whether the component meets his needs. Thus, the torsi-

56

- - V....%s .Iv .--.------ -11

FUN~CTIONAL DESCRIPTION
SUGGESTED OUTLINE

1. Functional Summary

1.1 Component Function
1.2 Scope of Reuse

2. Documentation References

3. Performance Characteristics

3.1 Sizing
3.2 Timing
3.3 Others

4. Known Limitations

5. User Nodification/Customization Provisions

6. Partial Reuse Potential

7. Special Design Considerations

8. Error Handling

9. What to do if a Problem Occurs

9.1 Troubleshooting
9.2 Who to Contact

10. Examples of Use

Figure 6-1. Suggested Functional Description Ouitline

57

.................................

nology used should communicate to the largest audience possible. If
the function might be known in somewhat different terms by different

* potential user communities, it is appropriate to describe it in
these various terms.

* The model concept discussed in Section 4.1 can be used in this
description. The functional model implemented by the reusable
component should be described in the more general terms of the
model. This is an effective method for allowing potential reusers
to assess the fit with their needs.

This section also briefly documents the planned or envisioned

scope of reuse. That is, what kinds of applications are expected to
be able to make use of this component, and what limitations might
make certain kinds of reuse unlikely. This is not intended as a
complete description of the component's interface characteristics,
but simply as a guide to let the potential reuser know whether he
should consider the component a possibility for more detailed
investigation. He will have to look at the rest of the documenta-
tion (including the Interface Description part) to definitely
determine whether he wants to use the component.

6.1.2 Section 2 -- Documentation References

This section should reference the design documentation (for
example, B-5 and C-5 specifications) for the component, as well as
any other documentation that may exist. This might include, for
example, test plans and procedures documents. This information is
included not because the user is expected to use this documentation,
but to allow him to satisfy contractual requirements to deliver
documentation for his entire system, including this "off-the-shelf"
component.

6.1.3 Performance Characteristics

This section documents the performance characteristics of the
component. This includes sizing, timing, and other appropriate
information. This information is critical to the potential user and
must be provided.

Sizing information will include memory occupied by the com-
ponent, disk space requirements, and any other similar information
that may be necessary to determine whether the component can be used
(for example, stack space requirement).

58

Timing ~ ~ ~ ~ ~ ~ ~ ~ ~ rrr inomto ca beepesdi vreyo om

Tiin ibsormaetion canbeexesed efr is auvariyofs formn

particular kinds of inputs

o percent of processor time used by this component in a
representative application

o description of the tasking structure of the component in a
vay that will permit the user to estimate the task switching
overhead to be expected in his application

o frequency with which the component must be called to ensure
correct operation (appropriate to certain realtime
applications)

Any such timing information must be presented in terms of the
machine configuration(s) and Ada language processor(s) used when
collecting the data.

6.1.4 Known Limitations

This section presents any operational limitations of the com-
ponent. This would address any restrictions that make the component
do something less than the functional summary would lead the user to
expect. These limitations might include:

o kinds of inputs the component cannot handle

o functional deviations from the commonly held view of the
"abstract function" the component implements

o dependence on particular characteristics of the Ada
processor used (e.g., pragmas or runtime capabilities)

o dependence on particular characteristics of the target
hardware (e.g., existence of particular 1/0 features)

o known bugs

6.1.5 User Modification/Customization Provisions

Many software components are designed not to be reused exactly
as is, but rather to be modified or customized by the user in well-

59

.,ad

defined ways. Others may allow reuse as is and may also permit user
customization. This section enumerates the provisions for modi-
fication or customization by the user. Each such modification/
customization should be described, including:

o purpose of the modification/customization

o how to make the modification/customization to the software

o how to verify that this was done correctly

This section should include examples (i.e., the specific

changes required) of common customizations that users might be ex-

pected to make.

6.1.6 Partial Reuse Potential

It may be the case that a user may be interested in reusing
part of a component onl~y. For example, the user of a communications
protocol package may be interested in the Receive portion but not
the Transmit portion. This section documents any such envisioned
partial reuses and gives directions for accomplishing them.

Certain such partial reuse may be possible by simply including
the complete reusable component in the Ada Program Library and
depending on the linker to include only called subprograms. This
sort of partial reuse, if envisioned, should still be documented.
This arrangement may not be desirable if the size of the unused part
is very large, as it effectively becomes a part of the new system
and must be configuration controlled, etc., even though it is never
really used.

6.1.7 Special Design Considerations

Ordinarily the user of the reusable component will not need to
be aware of the internal design of the component or algorithms used.
However, there may be situations where certain design decisions are
important. For example, a user might be looking for some mathe-
mnatical routine that uses a particular algorithm known for its
greater efficiency. It is then appropriate to note that the com-
ponent uses that algorithm.

It is the responsibility of the reusable component designer to
determine whether the component has design characteristics of
interest to the reuser, and to document them in this section.

60

6.1.8 Error Handling

This should be a description of how the component responds to
incorrect inputs or use. It is probably best presented in some sort
of tabular format. If there is extensive information to be pro-
vided, e.g., lists of error messages, this can be deferred to an
appendix.

6.1.9 What to do if a Problem Occurs

S This section provides user guidance on what to do if the
component does not appear to operate as expected. This should
include some trouble-shooting procedures@ and perhaps a table of
common symptoms and likely causes. There should also be some
statement of who to notify in the event of a problem. (This should
presumably be the organization responsible for maintenance of the
component.)

K 6.1.10 Examples of Reuse

This section should present representative examples of reuse of
the component. Its purpose is to illustrate the kinds of applica-
tions that might make use of the component and to show broadly how
they are structured to do so. It does not give details of the
interfaces, which are presented in the Interface Description.

6.2 INTERFACE DESCRIPTION

[Tepeieueo ahitefc utb ecie.
The Interface Description enumerates the interfaces of the

reusable component and describes precisely how each is to be used.
It is the definitive statement of how to use the component, i.e.,
how the user "connects" it to his system.

The Interface Description is organized by interface. It should
contain a subsection for each interface, with a description of how
to use that interface. For this purpose, each parameter, shared
data item, file, etc., is a distinct interface and should be
documented as an entity.

The kinds of information to be presented in documenting an
interface depend on the type of interface involved. The following

61

I-f "t-I

paragraphs describe the information required to document each of the
types of interfaces listed in Section 4.3.

6.2.1 Reusable Component Called Via Subprogram Call by Reuser

o calling format (in Ada)

o complete descriptions of parameters (in Ada), plus any
additional information needed, i.e., other constraints on
parameter values, expected interrelationships of parameter
values, etc.

o complete descriptions of the meaning of each parameter

o complete description of exceptions that can be raised

6.2.2 Reusable Component Calls Subprogram of Reuser

o description of expected functioning of the subprogram called

o complete parameter descriptions, as above

o exceptions that, if raised by the called subprogram, will be

handled, and how they will be handled

6.2.3 Reusable Component is a Task with an Entry Called by Reuser

o complete parameter descriptions, as above

o any required time dependencies as to when the entry is

called

ro conditions under which the call will/will not be accepted,
and what waits might occur before rendezvous can happen

o vhat wait is incurred before the rendezvous completes how
the task is terminated

6.2.4 Reusable Component is a Task that Calls an Entry of Rouser

o complete parameter descriptions, as above

o description of expected functioning of the called task

62

o timing requirement -- how fast must call be accepted, and
how fast must rendezvous be completed

o expected frequency of calls to called task

6.2.5 Reusable Component Shares Memory with Subprogram of Reuser

o complete Ada declaration of the shared data item

o for each element of the shared data item, exactly how the
element is set and used by the reusable component, and under
what circumstances

o as above, describing precisely how each element is expected
to be set and used by the reuser

6.2.6 Reusable Component is a Task Sharing Memory vith Task of
Reuser

o all information for task as described in 6.2.3 or 6.2.4
above

o all information for shared data item as described in 6.2.5

o complete description of procedures for synchronizing reads

* and writes

6.2.7 Reusable Component Communicates with Heuser via a Shared File
with One Writing and the Other Reading

o complete description of file structure or reference to such
a description

o as for description of shared memory interface, description
of how the elements of the file are set or used by the
reusable component and how they are expected to be set or
used by the reuser

h6.2.8 Reusable Component Communicates with Reuser via a Shared File
F~ with Simultaneous Access by Both

K o all information described in 6.2.7 for shared file

o description of synchronization mechanism used

63

6.2.9 Reusable Component Communicates with Reuser via a Message

Passing or "Kailbox" Mechanism

o complete description of (or reference to) the protocol

o description of messages sent and expected received messages,
and circumstances in which each occurs (includes descrip-
tions of actual and expected responses)

6.2.10 Reusable Component Sends Data to and/or Receives Data from

Reuser via a Communication Channel

o description (typically by reference) of the protocol used

o as above, descriptions of intended transmissions and/or
receptions

6.2.11 Reusable Component and Reuser Have an Additional "Under-
standing" About One Another

o prose or other description appropriate to the type of
understanding

64

- ~ ~ ~ ~ ~ ~ ~ ~ ~ .q. , .17 ...-.-. ,. -Q- -

SECTION 7

MANAGEMENT GUIDELINES

Reusabilty wili only occur through explicit management

Reusability will never happen "by accident." A piece of soft-
ware not designed with reusability as a goal, wiii almost certainly
have too many limiting assumptions to be of any general use, and

will not have the necessary documentation to permit reuse.p Reusability goes beyond the concern of the individual pro-
graumer -- it is the concern of those with a global view concerned
with future projects and additional applications. It is manage-
ment's responsibility to identify a requirement for reusability and
to see that it is carried out. (Note that "management" can refer to

a variety of organizational entities. It may be a department
manager recognizing commonality among his department's projects, a
corporate manager deciding that a reusable software component wili
improve his company's competitive position on subsequent efforts, or
a government program manager recognizing the potential for reuse
from one program to the next.)

Management must be prepared to pay a price fo~rreusability.I

It is important for management to realize that reusability has
a price. Developing reusable software will cost more in initial
design and implementation effort, and the resulting software may
perform less efficiently. Management must understand both the
benefits and the costs of reusable software to make an informed
decision about when the benefits outweigh the costs.

Management direction involves both providing incentives for
producing reusable software, and determining that the software
produced in fact meets reusability guidelines. The first two
subsections of this section deal with these topics. The final
subsection discusses the selection of tools to support reusability.

7.1 INCENTIVES FOR REUSABILITY

Reusability will not occur automatically; designers and
programmers must be explicitly directed and motivated to

65

Designers and programmers will not produce reusable software
unless they are explicitly motivated to do so. By "motivated", we
mean that reusability must be made an explicit, well-defined, and
measurable project requirement, just as functional and performance
requirements are explicit, well-defined, and measurable. Because
reusability will be a relatively new requirement to most designers,
it will also be important to explain what reusability means and why
it is required for the particular software component under con-
sideration.

Reusability requirements must be as well-defined as
other

program requirements.

How is a reusability requirement defined? This is best accomp-
lished by describing the specific scope of reusability required for
the component, and by determining in advance how compliance with the
requirement will be demonstrated. This approach of defining a re-
quirement in terms of tests that must be met is a familiar and
effective one, particularly for somewhat "intangible" requirements.

Explaining the concept of reusability and the reasons it is
important is another management requirement. This guidebook will
help with understanding the overall concept as well as general
motivations for reusability -- the specific importance to the pro-
ject at hand must be determined by management and then conveyed to
designers and implementers. Presented positively, the idea of
widespread use of the software should be an incentive to software
developers.

ISpecific project guidelines, based on the guidelines in
this document, must be established.

Management goes beyond simply formulating a reusability re-
quirement. Specific guidance on procedures to be followed to attain
the requirement must be provided, especially for designers who are
new to the problem. This guidebook can serve as the basis for such
guidance. Because the guidebook addresses a wide variety of re-
usability requirements, it is necessary at the start of a project to
select from the guidebook those guidelines that are important to the
specific goals of the project, and to establish this selected set of
guidelines as project direction. These selected guidelines should
be concisely documented and clearly conveyed to designers and
developers.

66

Quality Assurance should use a reusability checklist to
audit for compliance with guidelines.

Guidelines must not only be established; they must be enforced.
For this task, management can call on Quality Assurance. A Quality
Assurance checklist, based on the selected guidelines described
above, should be prepared. This can then be used in regular audits
just as other standards checklists are used.

7.2 DERONSTRATING REUSABILITY

Specific reusability demonstrations must be defined._

If reusability is to be regarded as a requirement, it is

necessary to have a way of testing that the requirement is met.

Because tests must test something specific, this demands a
specific definition of the reusability required, not simply a
requirement that the software component be "as reusable as
possible." As noted previously, the requirement may actually be
specified in terms of the test to be passed. (This apparent
circularity is not a problem -- it is really the most precise way of
stating the requirement.)

How can reusability be tested? As described earlier, the
reusability of a component can be defined in terms of its inter-
faces. The interfaces and the values permitted for each define the
bounds of reusability of the component. An approach to testing the
component's reusability is to develop a set of tests that exercise
these various interfaces.

This approach takes the view of the reusable component as a
"black box" with well-defined interfaces and functionality. The
testing problem is then like that for any other software product --

tests provide a range of values at each interface and test for
appropriate functiou. The difference in testing a reusable
component and a stand-alone piece of software comes from the fact
that the reusable component is intended for use within other pieces
of software, and typically has a somewhat tighter coupling to this
using environment than a stand-alone program would have. Interfaces
may include assumptions about shared global data or "understandings"
about the surrounding environment. These interfaces, as well as the
more straightforward parameter interfaces, must be exercised.

67

7 .- -.- *..~ w

Sometimes it will not be possible for project m~anagement to
define the contexts in which a component may be reused, but
reusability in general may be considered a desirable goal. This is
the "as reusable as possible" kind of requirement. Earlier sections
of this document describe the general features of a software
component that contribute to its degree of reusability. These
include:

o the numbers and kinds of interfaces

* o the degree of generality or narrowness of the component's
function

o other design aspects such as layered architecture

These characteristics can be considered in evaluating the
potential reusability of a particular software design, and project

In considering testing for reusability, the issue of reusing
the component with other Ada implementations and on other processors
than the original ones will arise. This set of reports considers
these topics as portability rather than reusability issues, and
addresses them in the Portability Guidelines document.

7.3 TOOL SELECTION CRITERIA

Good software development tools can support the develop-
meat of reusable software.

One aspect of the project manager's job is to make sure the
software developers have the tools necessary to do their job.
Certain special considerations apply to the selection of tools that
support the development of reusable software. Certain requirements
must be met if the software is to in fact meet reusability guide-
lines without unacceptable performance penalty. These requirements
apply primarily to the selection of compilers and related tools.
Other considerations apply to selection of tools that, while not
essential, significantly ease the overall development process. The
classes of software development tools that must be considered
include the Ada compilation tools and other support software tools.
The following two subsections discuss these two categories.

68

7.3.1 Compiler Tools

Section 4.4 discussed the reasons why the provisions for gen-
erality in reusable code can lead to inefficiency and described
optimizations that can help overcome these problems. The selection
of an appropriate compiler (and associated tools) can be important
to a project requiring reusability.

Some of the specific compiler selection criteria to be con-
sidered are:

o How much interprocedural optimization is performed?

o Is inline code expansion supported?

o Does the compiler provide optimizations for the kinds of
situations that arise due to specialization of function-
ality? For example, if substitution of parameters leads to
an integer defined with range 1..1, will the code generated
treat this as a constant? (Note that range checks will
still be required on assignment.)

o Does the compiler permit the code bodies produced for
generated for generic bodies to be shared (i.e., generated
once and then called like a procedure for other generic
instantiations).

o Will procedures that are not actually called be omitted from
the program during linking?

o Are the following optimization. supported (all become par-
ticularly important in optimizing the kinds of code that
will result from expansion of parameterized components):

o dead code elimination

o constant propagation

o loop unrolling

o loop fusion

o Is there optimization to handle special combinations of

function calls that can arise from expansion?

69

7%Y-

It is important to note that more than compiler may require
consideration when designing a reusable software component.
Typically it will be desired to be able to reuse the component on
different computers as well as in different applications on the same
computer (i.e., portability as well as reusability will be a goal).
The designers of a reusable component should attempt to document the
optimizations that are particularly important for that component, so
that the potential reuser can determine whether his compiler will
support the component adequately.

If a potential reuser wishes to reuse a component but has only
a compiler that lacks many of the optimizations required to overc~ome
the generality of the reusable component, one option he may consider
is to use the reusable component as a starting point, expanding
parameters and optimizing at the source code level. This would have
the effect of producing a source program that no longer has the
generality of the reusable component. This may be a practical
approach for components with relatively simple parameterization, but
it requires some sophistication. A tool to perform this process (a
source code transformation tool) could be developed based on an
existing Ada compiler front end.

7.2 Other Tools

Tools supporting source code management, configuration
control, and testing can help in developing reusable
software.

One major class of tools supporting reusable software develop-
ment supports the management of the code components used to con-
figure a system from reusable components. These might include:

o library manipulation tools

o tools to allow substitution of different bodies for a given
specification (e.g., ALS variation sets)

o tools to support a catalog of reusable components along with
brief descriptions of their scope of reuse

Configuration control tools are also important. The configura-
tion control of a reusable component is like that of a software
product -- the component will have a group of users, possibly geo-
graphically dispersed, who must be considered. The users must be
able to report problems and obtain updates, and the central
maintainer must be able to determine which versions are in use.

70

I7

These requirements demand significant attention to configuration
control. The tools provided in a STONeMAN-compliant Ada environment
can be very helpful in meeting these requirements.

Finally, tools can be used to support the demonstration or
verification of reusability. These might include:

o Tools to support test execution and tracking.

o Standards enforcement tools to audit conformance to coding
standards that support reusability.

o Stub generators to create test environments for reuse.

71

. * * S -

APPENDIX A

BIBLIOGRAPHY

Boehm, B. W., J. Brown, H. Kaspar, M. Lipow, G. Macleod, and M.
Merrit, Characteristics of Software Quality, North-Holland
Publishing Company, Amsterdam, Holland, 1978.

Freburger, K. and V. Basili, The Software Engineering Laboratory:
Relationship Equations, Technical Report TR-764, SEL-3,
NSG-5123, University of Maryland, May 1979.

Goodenough, J. B. and R. V. Zara, The Effect of Software Structure
on Software Reliability, Modifiability, and Reusability: A
Case Study and Analysis, Final Report, SofTech, Inc., Waltham,
KA, Contract No. DAAA 25-72C 0667, 1974.

Graphical Kernel Systems (GKS), ISO Draft International Standard
7942, June 1983.

Hibbard, P., A. Hisgen, J. Rosenberg, M. Shaw, and M. Sherman,
Studies in Ada Style, 2nd Edition, Springer-Verlag, New York,
1983.

Holloway, G. H., W. R. Bush, and G. H. Mealy, Abstract Model of MSG:
First Phase of an Experiment in Software Development, Technical
Report 25-78. Final Report, Harvard University, Cambridge, MA,
ARPA Order No. 3079.3, October, 1978.

Neighbors, J. M., Software Construction Using Components, Technical
Report 160, University of California, 1981.

Parnas, D. L., Use of Abstract lnterfaces in the Development of
Software for Embedded Computer Systems, Naval Research
Laboratory, AD/A-043 369, Washington, D.C., June 1977.

Presson, P. E., J. Tsai, T. P. Bowen, J. V. Post, and R. Schmidt,

Software Interoperability and Reusability, Final Technical
Report RADC-TR-83-174, Contract No. F30602-80-C-0265, Boeing
Aerospace Company, July 1983. (Vol I: ADA138477; Vol II: ADA138478)

73

4 . . . - - - - - - - ~ - - - ' - ! t . .

Rogers, G. R., "A Simple Architecture for Consistent Application
Program Design," IBN Systems Journal, Volume 22, No. 3, 1983.

Smith, D. A. Rapid Software Prototyping, Technical Report 187,
University of California, 1982.

Spector, A. and D. Gifford, "Case Study: The Space Shuttle Primary
Computer System," Communications of the ACM, Volume 27, No. 9,
September 1984.

Wegner, P., "Capital-Intensive Software Technology," IEEE Software,

Volume 1, No. 3, July 1984.

74

DISTRIBUTION LIST

INTERNAL D-67 (continued)

D1O R. G. Howe (35)
G. S. Maday

A. J. Tachmindji R. L. Nicol
R. W. Miller

D-36 P. L. Mintz
C. D. Poindexter

J. B. Glore S. M. Rauseo
D. A. Spaeth

D-45 E. J. Tefft

G. A. Huff D-70

D-46 E. L. Lafferty
D. A. MacQueen

S. M. Maciorowski
D-73

D-60
J. A. Clapp

J. W. Shay S. J. Cohen
N. E. Bolen W. W. Parr

M. Gerhardt

D-63 E. C. Grund
R. L. Hamilton

G. Knapp M. Hazel
R. F. Hilliard

D-65 S. D. Litvintchouk
D. G. Miller

J. H. Galia R. G. Munck
F. D. O'Connor C. J. Righini
D.D. Neuman T. P. Saunders
S. W. Tavan K. A. Younger

D-66 D-75

R. L. Chagnon R. T. Jordan
M. M. Zuk

D-67
D-77

C. J. Carter
D. P Crowsen J. M. Appico
H. C. Floyd W. E. Byrne
E. J. Hammond 0. R. Lacroix
G. E. Hastings A. Sateriale

75

DISTRIBUTION LIST

INTERNAL (concluded) EXTERNAL (concluded)

D-1O1 Air Force Space Division
Directorate of Computer Resources

E. K. Kriegel Box 92960 Vorldway Postal Center

J. Riatta Los Angeles, CA 90009
L. C. Scannell
K. Zeh Lt. Col. E. Koss, Director

PROJECT Army Deputy Director
Ada/STARS Joint Program Office

Electronic Systems Division 3D-139 (400 AN) Pentagon
Hanscom Air Force Base Washington, DC 20301
Bedford, MA 01731

Lt. Col. R. Stanley, USA
TCRB

Boston University
B. J. Hopkins College of Engineering
Lt. J. Graves 110 Cummington Street
Lt. K. K. Paniezczyn Boston, MA 02215

ALSE Dr. N. Ruane (15)
Dr. R. Vidale

W. Letendre
Lt. A. Steadman Language Control Facility

Wright Patterson AFB
Langley AFB Dayton, OH
Hampton, VA 23665

G. Castor
TAC/TAFIG

Naval Ocean Systems Center
Lt. Col. E. Masek Code 423

San Diego, CA 92152

H. Mumm
EXTERNAL

WIS Program Office
Air Force Armament Laboratory The MITRE Corporation
Eglin AFB, FL 32542 D Building

Burlington Road
C. M. Anderson Bedford, MA 01730

Raj. R. Davis
Capt. Saunders

76

%..".'., "

Defense Techn.c.eal Information Center AFGL/SULL
* Cameron Station Research Library

Alexandria, VA 22314 (12) Hanscom AFB, MA 01731

77

.. . .*b* * ~ .*' . x

FILMED.

DTIC
, - %

